answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natalija [7]
2 years ago
6

A compressed spring has 16.2 J of elastic potential energy when it is compressed 0.30 m. What is the spring constant of the spri

ng? 90 N/m 108 N/m 180 N/m 360 N/m
Physics
2 answers:
nikdorinn [45]2 years ago
7 0
Elastic potential = 1/2 x constant x square of compression lenght
So it's 360 N/m
muminat2 years ago
6 0

Answer: 360 N/m

Explanation:

The elastic potential energy of a spring is given by

E=\frac{1}{2}kx^2

where

k is the spring constant

x is the compression/stretching of the spring

In this problem, we know the elastic potential energy, E=16.2 J, and the compression, x=0.30 m. Therefore, we can re-arrange the formula to calculate the spring constant k:

k=\frac{2E}{x^2}=\frac{2\cdot 16.2 J}{(0.30 m)^2}=360 N/m

You might be interested in
The free-electron density in a copper wire is 8.5×1028 electrons/m3. The electric field in the wire is 0.0520 N/C and the temper
meriva

Answer:

(a) 1.87 x 10⁻⁴ m/s

(b) 0.013V

Explanation:

(a) Drift speed, v_{d} , is the average velocity that a charged particle can have due to an electric field. For a given current, I, the drift velocity is given by;

v_{d} = \frac{I}{qnA}             ----------------(i)

Where;

q = amount of charge

n = free charge density

A = cross-sectional area of the wire

But current density, J, is the electric current per unit cross-section area. This  is also equal to the ratio of the electric field, E, to the resistivity, p, of the material of the wire. i.e

J = \frac{I}{A} = \frac{E}{p}

Equation (i) can then be written as follows;

v_{d} = \frac{J}{qn} = \frac{E}{qnp}

v_{d} = \frac{E}{qnp}      ---------------------(ii)

From the question;

E = 0.0520N/C

p = 1.72 x 10⁻⁸ Ωm

n = 8.5 x 10²⁸ electrons/m³

c = charge on electron = 1.9 x 10⁻¹⁹C

Substitute these values into equation (ii) as follows;

v_{d} = \frac{0.0520}{1.9*10^{-19} * 8.5*10^{28} * 1.72*10^{-8}}

v_{d} = 1.87 x 10⁻⁴ m/s

(b) The potential difference, V, is given by the product of the electric field and the distance, d, between the two points in the wire. i.e

V = E x d        [where d = 25.0cm = 0.25m]

V = 0.0520 x 0.25

V = 0.013V

4 0
2 years ago
An air-track cart with mass m1=0.28kg and initial speed v0=0.75m/s collides with and sticks to a second cart that is at rest ini
arsen [322]
Kinetic energy is calculated through the equation,

   KE = 0.5mv²

At initial conditions,

  m₁:  KE = 0.5(0.28 kg)(0.75 m/s)² = 0.07875 J

  m₂ : KE = 0.5(0.45 kg)(0 m/s)² = 0 J

Due to the momentum balance,

   m₁v₁ + m₂v₂ = (m₁ + m₂)(V)

Substituting the known values,

   (0.29 kg)(0.75 m/s) + (0.43 kg)(0 m/s) = (0.28 kg + 0.43 kg)(V)

   V = 0.2977 m/s

The kinetic energy is,
   KE = (0.5)(0.28 kg + 0.43 kg)(0.2977 m/s)²
   KE = 0.03146 J

The difference between the kinetic energies is 0.0473 J. 
7 0
2 years ago
An ant is crawling along a yardstick that is pointed with the 0-inch mark to the east and the 36-inch mark to the west. It start
FrozenT [24]

Answer:

  • The total distance traveled is 28 inches.
  • The displacement is 2 inches to the east.

Explanation:

Lets put a frame of reference in the problem. Starting the frame of reference at the point with the 0-inch mark, and making the unit vector \hat{i} pointing in the west direction, the ant start at position

\vec{r}_0 = 16 \ inch \ \hat{i}

Then, moves to

\vec{r}_1 = 29 \ inch \ \hat{i}

so, the distance traveled here is

d_1 = |\vec{r}_1 - \vec{r}_0  | = | 29 \ inch   \ \hat{i} - 16 \ inch   \ \hat{i}  |

d_1 =  | 13 \ inch   \ \hat{i}  |

d_1 =  13 \ inch

after this, the ant travels to

\vec{r}_2 = 14 \ inch \ \hat{i}

so, the distance traveled here is

d_2 = |\vec{r}_2 - \vec{r}_1  | = | 14 \ inch   \ \hat{i} - 29 \ inch   \ \hat{i}  |

d_2 =  | - 15 \ inch   \ \hat{i}  |

d_2 =  15 \ inch

The total distance traveled will be:

d_1 + d_2 = 13 \ inch + 15 \ inch = 28 \ inch

The displacement is the final position vector minus the initial position vector:

\vec{D}=\vec{r}_2 - \vec{r}_1

\vec{D}= 14 \ inch   \ \hat{i} - 16 \ inch \ \hat{i}

\vec{D}= - 2 \ inch \ \hat{i}

This is 2 inches to the east.

6 0
2 years ago
A pole-vaulter is nearly motionless as he clears the bar, set 4.2 m above the ground. he then falls onto a thick pad. the top of
scZoUnD [109]
Refer to the diagram shown below.

Neglect wind resistance, and use g = 9.8 m/s².

The pole vaulter falls with an initial vertical velocity of u = 0.
If the velocity upon hitting the pad is v, then
v² = 2*(9.8 m/s²)*(4.2 m) = 82.32 (m/s)²
v = 9.037 m/s

The pole vaulter comes to res after the pad compresses by  50 cm (or 0.5 m).
If the average acceleration (actually deceleration) is (a m/s²), then
0 = (9.037 m/s)² + 2*(a m/s²)*(0.5 m)
a = - 82.32/(2*0.5) = - 82 m/s²

Answer: - 82 m/s² (or a deceleration of 82 m/s²)

8 0
2 years ago
Read 2 more answers
Imagine you want to get 1 kcal of energy from a cow. How much energy would the cow need to get from plants? Why?
ZanzabumX [31]
1000 kcal because you only get 10% of the energy of the thing you eat
7 0
2 years ago
Other questions:
  • When you stand by the side of a pool someone swimming underwater appears to be in a different location than she really is the ef
    10·2 answers
  • The mass of the Sun is 2 × 1030 kg, and the mass of Saturn is 5.68 × 1026 kg. The distance between Saturn and the Sun is 9.58 AU
    12·2 answers
  • When photons with a wavelength of 310. nm strike a magnesium plate, the maximum velocity of the ejected electrons is 3.45 105 m/
    15·1 answer
  • A ball collides elastically with an immovable wall fixed to the earth’s surface. Which statement is false? 1. The ball's speed i
    5·1 answer
  • a)A concentration C(mol/L) varies with time (min) according to the equation C=3.00exp(−2.00t) a) What are the implicit units of
    7·1 answer
  • Dante uses 14 J of work to lift a weight for 30 seconds. How much power did he use?
    14·1 answer
  • Kevin is a black high school senior. While walking home from a sporting event at school, he sees a police car and decides to tak
    14·1 answer
  • The Type K thermocouple has a sensitivity of about 41 micro-Volts/℃, i.e. for each degree difference in the junction temperature
    6·1 answer
  • ery large accelerations can injure the body, especially if they last for a considerable length of time. One model used to gauge
    8·1 answer
  • Use the idea of density to explain why the dead creatures sink to the seabed​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!