If it is heated while it is being compressed or held inside a container as such, the pressure build up while in the container and the pressure can become so much that the container will burst.
Answer:
1.123x10⁻⁴ moles of alanine
Explanation:
In order to convert grams of alanine into moles, <em>we need to know its molecular weight</em>:
The formula for alanine is C₃H₇NO₂, meaning <u>its molecular weight would be</u>:
- 12*3 + 7*1 + 14 + 16*2 = 89 g/mol
Then we <u>divide the sample mass by the molecular weight</u>, to do the conversion:
- 1.0x10⁻² g ÷ 89 g/mol = 1.123x10⁻⁴ moles
First step is to balance the reaction equation. Hence we get
P4 + 5 O2 => 2 P2O5
Second, we calculate the amounts we start with
P4: 112 g = 112 g/ 124 g/mol – 0.903 mol
O2: 112 g = 112 g / 32 g/mol = 3.5 mol
Lastly, we calculate the amount of P2O5 produced.
2.5 mol of O2 will react with 0.7 mol of P2O5 to produce 1.4
mol of P2O5.
This is 1.4 * (31*2 + 16*5) = 198.8 g
Answer : The pH of 0.289 M solution of lithium acetate at
is 9.1
Explanation :
First we have to calculate the value of
.
As we know that,

where,
= dissociation constant of an acid = 
= dissociation constant of a base = ?
= dissociation constant of water = 
Now put all the given values in the above expression, we get the dissociation constant of a base.


Now we have to calculate the concentration of hydroxide ion.
Formula used :
![[OH^-]=(K_b\times C)^{\frac{1}{2}}](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D%28K_b%5Ctimes%20C%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D)
where,
C is the concentration of solution.
Now put all the given values in this formula, we get:
![[OH^-]=(5.5\times 10^{-10}\times 0.289)^{\frac{1}{2}}](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D%285.5%5Ctimes%2010%5E%7B-10%7D%5Ctimes%200.289%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D)
![[OH^-]=1.3\times 10^{-5}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.3%5Ctimes%2010%5E%7B-5%7DM)
Now we have to calculate the pOH.
![pOH=-\log [OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%20%5BOH%5E-%5D)


Now we have to calculate the pH.

Therefore, the pH of 0.289 M solution of lithium acetate at
is 9.1
In metals, some of the electrons (often one per atom) are not stuck to individual atoms but flow freely among the atoms. Of course, that's why metals are such good conductors of electricity. Now if one end of a bar is hot, and the other is cold, the electrons on the hot end have a little more thermal energy- random jiggling- than the ones on the cold end. So as the electrons wander around, they carry energy from the hot end to the cold end, which is another way of saying they conduct heat.
Here, sodium is a metal which possesses an extra (valence) electron carries the heat around its body as it is a free electron, which enables sodium to conduct thermal energy.
Hope this help :)