The structures of the isomers and the m/z values of their peaks are not given in the question. The complete question is provided in the attachment
Answer:
Compound 2 (2,5-dimethylhexane) will not have the peaks at 29 and 85 m/z
Explanation:
The fragmentation of molecules by electron ionization of mass spectrometer occurs according to Stevenson's Rule, which states that "The most probable fragmentation is the one that leaves the positive charge on the fragment with the lowest ionization energy". This is much like the Markovnikov's Rule in organic chemistry which has predicted the formation of most stable carbocation and the addition of hydrogen halide to it.
The mass spectra of compound 1 (2,4-dimethylhexane) will contain all the m/z values mentioned in the question. Each peak indicate towards homologous series of fragmentation product of the compound 1. The first peak can be attributed to ethyl carbocation (m/z = 29), with the increase of 14 units the next peak indicates towards propyl carbocation (m/z = 43) and onwards until molecular ion peak of 114 m/z.
Compound 2 (2,5-dimethylhexane) structure shows that the cleavage of C-C bond will not yield a stable ethyl and hexyl carbocation. Hence, no peaks will be observed at 29 and 85 m/z. The absence of these two peaks can be used to distinguish one isomer from the other.
<span>The instructor should be questioned to see if the filtrate is able to be recycled. This precipitate can contaminate the filtrate, rendering it useless for repeated experiments. If it is able to be recycled, a second pass through the filter might be required to remove the precipitate.</span>
The reaction formula of this is C3H8 + 5O2 --> 3CO2 + 4H2O. The ratio of mole number of C3H8 and O2 is 1:5. 0.025g equals to 0.025/44.1=0.00057 mole. So the mass of O2 is 0.00057*5*32=0.0912 g.
A gas does not have a specific shape or volume (so we reject option A), instead it adjusts itself to the container (which is further influenced by other forces such as gravity and temperature) and it with time, willl fill the whole container evenly, so the correct answer is:
(2) It takes the shape and the volume of any container in which it is confined
Answer:
27.0
Explanation:
Because Mass can neither be created nor be destroyed hence total mass of sample of iodine and tube remain equal as it is sealed.