Answer:
a) W = - 318.26 J, b) W = 0
, c) W = 318.275 J
, d) W = 318.275 J
, e) W = 0
Explanation:
The work is defined by
W = F .ds = F ds cos θ
Bold indicate vectors
We create a reference system where the x-axis is parallel to the ramp and the axis and perpendicular, in the attached we see a scheme of the forces
Let's use trigonometry to break down weight
sin θ = Wₓ / W
Wₓ = W sin 60
cos θ = Wy / W
Wy = W cos 60
X axis
How the body is going at constant speed
fr - Wₓ = 0
fr = mg sin 60
fr = 15 9.8 sin 60
fr = 127.31 N
Y Axis
N - Wy = 0
N = mg cos 60
N = 15 9.8 cos 60
N = 73.5 N
Let's calculate the different jobs
a) The work of the force of gravity is
W = mg L cos θ
Where the angles are between the weight and the displacement is
θ = 60 + 90 = 150
W = 15 9.8 2.50 cos 150
W = - 318.26 J
b) The work of the normal force
From Newton's equations
N = Wy = W cos 60
N = mg cos 60
W = N L cos 90
W = 0
c) The work of the friction force
W = fr L cos 0
W = 127.31 2.50
W = 318.275 J
d) as the body is going at constant speed the force of the tape is equal to the force of friction
W = F L cos 0
W = 127.31 2.50
W = 318.275 J
e) the net force
F ’= fr - Wx = 0
W = F ’L cos 0
W = 0
Given:
Distance = 50 yard = 45.72 meter
Speed = 40 km/hr = 11.11 m/s
To find:
Time required by ball to reach the receiver = ?
Formula used:
speed = 
Solution:
The speed of the ball is given by,
speed = 
Thus,
Time = 
Distance = 50 yard = 45.72 meter
Speed = 40 km/hr = 11.11 m/s
Time = 4.12 second
Hence, ball reaches the receiver in 4.12 second.
For Newton's second law, the resultant of the forces acting on the book is equal to the product between the mass of the book and its acceleration:

(1)
There are only two forces acting on the book:
- its weight, directed downward: mg
- the force exerted by the hand on the book, of 20 N, directed upward
so, equation (1) becomes

from which we can calculate the book's acceleration, a:
Answer:
18 W
Explanation:
Applying,
P = V²/R.................. Equation 1
Where P = Power of both glowing bulbs, V = Voltage, R = Combined Resistance of both bulbs
Since: It is a series circuit,
Then,
R = R1+R2............. Equation 2
Where R1= Resistance of the first bulb, R2 = Resistance of the second bulb
Given: R1 = R2 = 8 Ω
Substitute into equation 1
R = 8+8
R = 16 Ω
Also Given: V = 12 V
Substitute into equation 1
P = 12²/8
P = 144/8
P = 18 W
A = h / n => h = a*n
a = 0.290 hit / time
n = 300 times
=> h = 0.290 hit / time * 300 time = 87 hits
Answer: 87 hits