Answer:
a) 
b) 
c) 
Explanation:
<em><u>The knowable variables are </u></em>




Since the three traffic signs are <u>equally spaced</u>, the <u>distance between each sign is
</u>
a) 
b) 
Since we know the velocity in two points and the time the car takes to pass the traffic signs
c) 
Answer:
t = 4.17 [s]
Explanation:
We know that work is defined as the product of force by distance.
W = F*d
where:
F = force [N] (units of Newtons)
d = distance = 6.34 x 10⁴ [mm] = 63.4 [m]
In order to find the force, we must determine the weight of the box, the weight can be determined by means of the product of mass by gravitational acceleration.
w = m*g
where:
m = mass = 1.47 x 10⁴ [g] = 14.7 [kg]
g = gravity acceleration = 9.81 [m/s²]
w = 14.7*9.81
w = 144.2 [N]
Therefore the work can be calculated.
W = w*d
W = 144.2*63.4
W = 9142.72 [J] (units of Joules)
Power is now defined in physics as the relationship of work at a given time
P = W/t
where:
P = power = 2190 [W]
t = time [s]
Now clearing t, we have.
t = W/P
t = 9142.72/2190
t = 4.17 [s]
Answer:
The answer is: c. It does not move
Explanation:
Because the gravitational force is characterized by being an internal force within the Earth-particle system, in this case, the object of mass M. And since in this system there is no external force in the system, it can be concluded that the center of mass of the system will not move.
Answer:
75 m
Explanation:
The horizontal motion of the projectile is a uniform motion with constant speed, since there are no forces acting along the horizontal direction (if we neglect air resistance), so the horizontal acceleration is zero.
The horizontal component of the velocity of the projectile is

and it is constant during the motion;
the total time of flight is
t = 5 s
Therefore, we can apply the formula of the uniform motion to find the horizontal displacement of the projectile:

Answer:
Power output: W=1426.9MW
Explanation:
The power output of the falls is given mainly by its change in potential energy:

The potential energy for any point can be calculated as:

If we consider the base of the falls to be the reference height, at point 2 h=0, so P2=0, and height at point 1 equals 52m:

If we replace m with the mass rate M we obtain the rate of change in potential energy over time, so the power generated:
