Answer:
Earth would continue moving by uniform motion, with constant velocity, in a straight line
Explanation:
The question can be answered by using Newton's first law of motion, also known as law of inertia, which states that:
"an object keeps its state of rest or of uniform motion in a straight line unless acted upon by an external net force different from zero"
This means that if there are no forces acting on an object, the object stays at rest (if it was not moving previously) or it continues moving with same velocity (if it was already moving) in a straight line.
In this problem, the Earth is initially moving around the Sun, with a certain tangential velocity v. When the Sun disappears, the force of gravity that was keeping the Earth in circular motion disappears too: therefore, there are no more forces acting on the Earth, and so by the 1st law of Newton, the Earth will continue moving with same velocity v in a straight line.
Answer:
Wet surfaces areaA=+25.3ft^2
Explanation:
Using F= K×A× S^2
Where F= drag force
A= surface area
S= speed
Given : F=996N S=20mph A= 83ft^2
K = F/AS^2=996/(83×20^2)
K= 996/33200 = 0.03
1215= (0.03)× A × 18^2
1215=9.7A
A=1215/9.7=125.3ft^2
Answer:

Explanation:
The attached image shows the system expressed in the question.
We can define an expression for the system.
The equivalent equation for the system would be

so, the input signal could be expressed in dB terms
(1)
so the output signal could be expressed as.

The gain should be expressed in dB terms and power in dBm terms so

using the (1) equation to find it in terms of Watts

Answer:
Isothermal : P2 = ( P1V1 / V2 ) , work-done 
Adiabatic : : P2 =
, work-done =
W = 
Explanation:
initial temperature : T
Pressure : P
initial volume : V1
Final volume : V2
A) If expansion was isothermal calculate final pressure and work-done
we use the gas laws
= PIVI = P2V2
Hence : P2 = ( P1V1 / V2 )
work-done :

B) If the expansion was Adiabatic show the Final pressure and work-done
final pressure

where y = 5/3
hence : P2 = 
Work-done
W = 
Where 
Answer:
at y=6.29 cm the charge of the two distribution will be equal.
Explanation:
Given:
linear charge density on the x-axis, 
linear charge density of the other charge distribution, 
Since both the linear charges are parallel and aligned by their centers hence we get the symmetric point along the y-axis where the electric fields will be equal.
Let the neural point be at x meters from the x-axis then the distance of that point from the y-axis will be (0.11-x) meters.
<u>we know, the electric field due to linear charge is given as:</u>

where:
linear charge density
r = radial distance from the center of wire
permittivity of free space
Therefore,





∴at y=6.29 cm the charge of the two distribution will be equal.