Answer:
A
Explanation:
From a Solenoid we know that a magnetic fiel is always inversely proportional to lenght L or BL = constant

As I is constant



In order to answer this question ... strange as it may seem ...
we only need one of those measurements that you gave us
that describe the door.
The door is hanging on frictionless hinges, and there's a torque
being applied to it that's trying to close it. All we need to do is apply
an equal torque in the opposite direction, and the door doesn't move.
Obviously, in order for our force to have the most effect, we want
to hold the door at the outer edge, farthest from the hinges. That
distance from the hinges is the width of the door ... 0.89 m.
We need to come up with 4.9 N-m of torque,
applied against the mechanical door-closer.
Torque is (force) x (distance from the hinge).
4.9 N-m = (force) x (0.89 m)
Divide each side by 0.89m: Force = (4.9 N-m) / (0.89 m)
= 5.506 N .
Answer:
the expected distance is 4.32 m
Explanation:
given data
half life time = 1.8 ×
s
speed = 0.8 c = 0.8 × 3 ×
to find out
expected distance over
solution
we know c is speed of light in air is 3 ×
m/s
we calculate expected distance by given formula that is
expected distance = half life time × speed .........1
put here all these value
expected distance = half life time × speed
expected distance = 1.8 ×
× 0.8 × 3 ×
expected distance = 4.32
so the expected distance is 4.32 m
Answer:
from the above analysis we can say that the angular velocity in the later case is more than that of the former case. This means that the number of rotation made in the truck case is more than that made in pike position.
Explanation:
This can be explained on the basis of conservation of angular momentum.
This means the initial and the final angular velocity is conserved. Consider initial position (1)in the pike and final position in the be truck position. So there inertia's will also be different.
⇒

also,


since, 

therefore,

So, from the above analysis we can say that the angular velocity in the later case is more than that of the former case. This means that the number of rotation made in the truck case is more than that made in pike position.