Answer:
The young tree, originally bent, has been brought into the vertical position by adjusting the three guy-wire tensions to AB = 7 lb, AC = 8 lb, and AD = 10 lb. Determine the force and moment reactions at the trunk base point O. Neglect the weight of the tree.
C and D are 3.1' from the y axis B and C are 5.4' away from the x axis and A has a height of 5.2'
Explanation:
See attached picture.
Answer:

Explanation:
The weekly water consumption of Kimonoski is:






The total energy required per week for hot water is:



Answer:
y = 54.9 m
Explanation:
For this exercise we can use the relationship between the work of the friction force and mechanical energy.
Let's look for work
W = -fr d
The negative sign is because Lafourcade rubs always opposes the movement
On the inclined part, of Newton's second law
Y Axis
N - W cos θ = 0
The equation for the force of friction is
fr = μ N
fr = μ mg cos θ
We replace at work
W = - μ m g cos θ d
Mechanical energy in the lower part of the embankment
Em₀ = K = ½ m v²
The mechanical energy in the highest part, where it stopped
= U = m g y
W = ΔEm =
- Em₀
- μ m g d cos θ = m g y - ½ m v²
Distance d and height (y) are related by trigonometry
sin θ = y / d
y = d sin θ
- μ m g d cos θ = m g d sin θ - ½ m v²
We calculate the distance traveled
d (g syn θ + μ g cos θ) = ½ v²
d = v²/2 g (sintea + myy cos tee)
d = 9.8 12.6 2/2 9.8 (sin16 + 0.128 cos 16)
d = 1555.85 /7.8145
d = 199.1 m
Let's use trigonometry to find the height
sin 16 = y / d
y = d sin 16
y = 199.1 sin 16
y = 54.9 m
Answer:
43.58 m
Explanation:
If you travel 500 m on a straight road that slopes upward at a constant angle of 5 degrees
Using trigonometry ratio
Sin 5 = opposite/hypothenus
Where the hypothenus = 500m
Opposite = height h
Sin 5 = h/500
Cross multiply
500 × sin 5 = h
h = 500 × 0.08715
h = 43.58m
Therefore, the height above the starting point is equal to 43.58m
The output of the machine is
(output work) = (output force) x (distance)
450 N-m = (output force) x (3 meters)
Divide each side
by 3 meters: Output force = (450 N-m) / (3 m)
= 150 newtons .
With all the information given about the output work, we don't need
to know anything about the input work, or even the fact that we're
dealing with a machine.
It's comforting, though, to look back and notice that the output work
(450 N-m) is not more than the input work (500 N-m). So everything
is nice and hunky-dory.
___________________________________
Well, my goodness !
I didn't even need to go through all of that.
Given:
-- The input force to the machine is 50 newtons.
-- The mechanical advantage of the machine is 3 .
That right there tells us that
-- The output force of the machine is 150 newtons.
We don't need any of the other given information.