Answer:
mass of U-235 = 15.9 g (3 sig. figures)
Explanation:
1 atom can produce -------------------------> 3.20 x 10^-11 J energy
x atoms can produce ----------------------> 1.30 x 10^12 J energy
x = 1.30 x 10^12 / 3.20 x 10^-11
x = 4.06 x 10^22 atoms
1 mol ----------------------> 6.023 x 10^23 atoms
y mol ----------------------> 4.06 x 10^22 atoms
y = 0.0675 moles
mass of U-235 = 0.0675 x 235 = 15.8625
mass of U-235 = 15.9 g (3 sig. figures)
Answer:
VP as function of time => VP(Ar) > VP(Ne) > VP(He).
Explanation:
Effusion rate of the lighter particles will be higher than the heavier particles. That is, the lighter particles will leave the container faster than the heavier particles. Over time, the vapor pressure of the greater number of heavier particles will be higher than the vapor pressure of the lighter particles.
=> VP as function of time => VP(Ar) > VP(Ne) > VP(He).
Review Graham's Law => Effusion Rate ∝ 1/√formula mass.
<span>2 KClO3(s) → 3 O2(g) + 2 KCl(s)
</span><span>Note: MnO2 (Manganese Dioxide) is not part of the reaction. A catalyst lowers the activation energy and increases both forward and reverse reactions at equal rates.
</span>
molar mass of KClO3 = 122.5
Moles of KClO3 = 3.45 / 122.55 = 0.028
Moles of O2 produce =

= 0.042 moles
molar mass of O2 = 32
so, mass of O2 = 32 x 0.042 = 1.35 g
Answer: 2-Phenyl-2-Penetene on ozonolysis <span>yields acetophenone and propanal.
Explanation: The tricky way to solve such questions is to simply break the double bond in alkene and place oxygen atom at each broken half double bond making it carbonyl group. The reaction of given statement is as follow,</span>
Hello!
To find the amount of atoms that are in 80.45 grams of magnesium, we will need to know Avogadro's number and the mass of one mole of magnesium.
Avogadro's number is 6.02 x 10^23 atoms, and one mole of magnesium is equal to 24.31 grams.
1. Divide by one mole of magnesium
80.45 / 24.31 = 3.309 moles (rounded to the number of sigfigs)
2. Multiply moles by Avogadro's number
3.309 x (6.02 x 10^23) = 1.99 x 10^24 (rounded to the number of sigfigs)
Therefore, there are 1.99 x 10^24 atoms in 80.45 grams of magnesium.