answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bad White [126]
2 years ago
9

A 8kg cat is running 4m/s. how much kinetic energy does it have?

Physics
2 answers:
Daniel [21]2 years ago
7 0
The formula for kinetic energy is, { E }_{ k }=\frac { 1 }{ 2 } \cdot m\cdot { v }^{ 2 } 
where m is mass and v is velocity.

Let's plug the given values in the formula.

{ E }_{ k }=\frac { 1 }{ 2 } \cdot m\cdot { v }^{ 2 }\\ \\ { E }_{ k }=\frac { 1 }{ 2 } \cdot 8\cdot { 4 }^{ 2 }\\ \\ { E }_{ k }=\frac { 1 }{ 2 } \cdot 8\cdot 16\\ \\ { E }_{ k }=4\cdot 16\\ \\ { E }_{ k }=64\quad \\ \\

It's kinetic energy is 64 Joules.
olya-2409 [2.1K]2 years ago
6 0

Kinetic energy = (1/2) (mass) (speed)²

Kinetic energy = (1/2) (8 kg) (4 m/s)² =
 
                                  (4 kg) (16 m²/s²) =

                                   64  (kg-m/s²) (m) = 64 newton-m = <em>64 joules</em>


And may I say . . . that is one fat cat !     (about 17.6 pounds)


You might be interested in
A 30.0-kg child sits on one end of a long uniform beam having a mass of 20.0 kg, and a 40.0-kg child sits on the other end. The
qaws [65]

let the length of the beam be "L"

from the diagram

AD = length of beam = L

AC = CD = AD/2 = L/2

BC = AC - AB = (L/2) - 1.10

BD = AD - AB = L - 1.10

m = mass of beam = 20 kg

m₁ = mass of child on left end = 30 kg

m₂ = mass of child on right end = 40 kg

using equilibrium of torque about B

(m₁ g) (AB) = (mg) (BC) + (m₂ g) (BD)

30 (1.10) = (20) ((L/2) - 1.10) + (40) (L - 1.10)

L = 1.98 m

4 0
2 years ago
For a group class project, students are building model roller coasters. Each roller coaster needs to begin at the top of the fir
abruzzese [7]

Case A :

A .75 kg 65 N/m 1.2 m

m = mass of car = 0.75 kg

k = spring constant of the spring = 65 N/m

h = height of the hill = 1.2 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (65) (0.25)² + (0.75 x 9.8 x 1.2) = (0.5) (0.75) v²

v = 5.4 m/s



Case B :

B .60 kg 35 N/m .9 m

m = mass of car = 0.60 kg

k = spring constant of the spring = 35 N/m

h = height of the hill = 0.9 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (35) (0.25)² + (0.60 x 9.8 x 0.9) = (0.5) (0.60) v²

v = 4.6 m/s




Case C :

C .55 kg 40 N/m 1.1 m

m = mass of car = 0.55 kg

k = spring constant of the spring = 40 N/m

h = height of the hill = 1.1 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (40) (0.25)² + (0.55 x 9.8 x 1.1) = (0.5) (0.55) v²

v = 5.1 m/s




Case D :

D .84 kg 32 N/m .95 m

m = mass of car = 0.84 kg

k = spring constant of the spring = 32 N/m

h = height of the hill = 0.95 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (32) (0.25)² + (0.84 x 9.8 x 0.95) = (0.5) (0.84) v²

v = 4.6 m/s


hence closest is in case C at 5.1 m/s




7 0
2 years ago
Read 2 more answers
A physics student walks 100 meters in 80 seconds. The student stops for 30 seconds, and then walks 200 meters farther in 90 seco
Elan Coil [88]

Answer:

B i think is the answer

Explanation:

i feel like it is B because if you put them together and the answer is 1.5 so it is B

8 0
2 years ago
The simulation kept track of the variables and automatically recorded data on object displacement, velocity, and momentum. If th
DiKsa [7]
<h2><u>Answer:</u></h2>

The simulation kept track of the variables and automatically recorded data on object displacement, velocity, and momentum. If the trials were run on a real track with real gliders, using stopwatches and meter sticks for measurement, the data compared by the following statements:

1. (There would be variables that would be hard to control, leading to less reliable data.)

3. (Meter sticks may lack precision or may be read incorrectly.)

4. (Real glider data may vary since real collisions may involve loss of energy.)

5. (Human error in recording or plotting the data could be a factor.)


6 0
2 years ago
Read 2 more answers
The expressions for e/m and the relative error of e/m due to all of the parameters measured:
bija089 [108]

Answer:

Term 1 = (0.616 × 10⁻⁵)

Term 2 = (7.24 × 10⁻⁵)

Term 3 = (174 × 10⁻⁵)

Term 4 = (317 × 10⁻⁵)

(σ ₑ/ₘ) / (e/m) = (499 × 10⁻⁵) to the appropriate significant figures.

Explanation:

(σ ₑ/ₘ) / (e/m) = (σᵥ /V)² + (2 σᵢ/ɪ)² + (2 σʀ /R)² + (2 σᵣ /r)²

mean measurements

Voltage, V = (403 ± 1) V,

σᵥ = 1 V, V = 403 V

Current, I = (2.35 ± 0.01) A

σᵢ = 0.01 A, I = 2.35 A

Coils radius, R = (14.4 ± 0.3) cm

σʀ = 0.3 cm, R = 14.4 cm

Curvature of the electron trajectory, r = (7.1 ± 0.2) cm.

σᵣ = 0.2 cm, r = 7.1 cm

Term 1 = (σᵥ /V)² = (1/403)² = 0.0000061573 = (0.616 × 10⁻⁵)

Term 2 = (2 σᵢ/ɪ)² = (2×0.01/2.35)² = 0.000072431 = (7.24 × 10⁻⁵)

Term 3 = (2 σʀ /R)² = (2×0.3/14.4)² = 0.0017361111 = (174 × 10⁻⁵)

Term 4 = (2 σᵣ /r)² = (2×0.2/7.1)² = 0.0031739734 = (317 × 10⁻⁵)

The relative value of the e/m ratio is a sum of all the calculated terms.

(σ ₑ/ₘ) / (e/m)

= (0.616 + 7.24 + 174 + 317) × 10⁻⁵

= (498.856 × 10⁻⁵)

= (499 × 10⁻⁵) to the appropriate significant figures.

Hope this Helps!!!

6 0
2 years ago
Other questions:
  • A compact car has a maximum acceleration of 4.0 m/s2 when it carries only the driver and has a total mass of 1200 kg . you may w
    7·2 answers
  • Light-rail passenger trains that provide transportation within andchameleons catch insects with their tongues, which they can ra
    7·1 answer
  • The electric field at a point 2.8 cm from a small object points toward the object with a strength of 180,000 N/C. What is the ob
    8·1 answer
  • A person kicks a ball, giving it an initial velocity of 20.0 m/s up a wooden ramp. When the ball reaches the top, it becomes air
    12·1 answer
  • You slide a coin across the floor, and observe that it slows down and eventually stops. A sensitive thermometer shows that its t
    12·1 answer
  • Delicate measurements indicate that the Earth has an electric field surrounding it, similar to that around a positively charged
    9·1 answer
  • The resistance of a very fine aluminum wire with a 20 μm × 20 μm square cross section is 1200 Ω . A 1200 Ω resistor is made by w
    7·1 answer
  • A one-dimensional particle-in-a-box may be used to illustrate the import kinetic energy quantization in covalent bond formation.
    6·1 answer
  • Modern wind turbines generate electricity from wind power. The large, massive blades have a large moment of inertia and carry a
    7·1 answer
  • The velocity of a car increases from 2.0 m/s to 16.0 m/s in a time period of 3.5 s. What was the average acceleration?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!