Answer:
The displacement of the spring due to weight is 0.043 m
Explanation:
Given :
Mass
Kg
Spring constant 
According to the hooke's law,

Where
force,
displacement
Here,
(
)
N
Now for finding displacement,

Here minus sign only represent the direction so we take magnitude of it.

m
Therefore, the displacement of the spring due to weight is 0.043 m
Answer:
Record your measured values of displacement and velocity for times t = 8.0 seconds and t = 10.0 seconds in the columns below.
Next, use the measured displacement and velocity values at t = 7.0 seconds and t = 9.0 seconds to interpolate the values of displacement and velocity at t = 8.0 seconds.
Use the following formula to interpolate and extrapolate. Remember, x and y here represent values on the x and y axes of the graph. The x values will really be time and the y values will be either displacement (x) or velocity (vx).
Explanation:
Record your measured values of displacement and velocity for times t = 8.0 seconds and t = 10.0 seconds in the columns below.
Next, use the measured displacement and velocity values at t = 7.0 seconds and t = 9.0 seconds to interpolate the values of displacement and velocity at t = 8.0 seconds.
Use the following formula to interpolate and extrapolate. Remember, x and y here represent values on the x and y axes of the graph. The x values will really be time and the y values will be either displacement (x) or velocity (vx).
This is the answer
When Ag(silver) reacts with CuCl2, Ag displaces Cu from CuCl2 and forms AgCl which is soluble and brownish red solid precipitate is left in the solution.
Hence option D is correct.
Hope this helps!
Answer:
A. 261.6 hz.
B. 0.656 m.
Explanation:
A.
When yhe tube is open at one end and closed at the other,
F1 = V/4*L
Where,
F1 = fundamental frequency
V = velocity
L = length of the tube
When the tube is open at both ends,
F'1 = V/2*L
Where
F'1 = the new fundamental frequency
Therefore,
V/2*L x V/4*L
F'1 = 2 * F1
= 2 * 130.8
= 261.6 hz.
B.
F1 = V/4*L
Or
F'1 = V/2*L
Given:
V = 343 m/s
F1 = 130.8
L = 343/(4 * 130.8)
= 0.656 m.
Answer:
The density of the mercury is 13.2 g/cm³
Explanation:
Density is a measurement that compares the amount of matter an object
has to its volume
Density is equal to mass divided by volume
We need to find the density of mercury if 500 cm³ has a mass of
6.60 kg in g/cm
We must to change The kilogram to grams
The mass of mercury is 6.60 kilograms
1 kilogram = 1000 grams
6.60 kilograms = 6.60 × 1000 = 6600 grams
Density = mass ÷ volume
The volume of the mercury is 500 cm³
The density = 6600 ÷ 500
The density = 13.2 g/cm³
<em>The density of the mercury is 13.2 g/cm³ </em>