Given that there is 48 liters of gasoline to be burned and that 45 kJ of energy is released per gram of gasoline burned, the amount of energy that the gasoline fuel produces can then be calculated, First, we convert 48 liters of gasoline to units of mass (grams) in order to use the given conversion of 45 kJ per gram of gasoline. To do this, we use the density of gasoline which is 0.77 g/mL. The following expression is then used:
48 L gasoline x 1000 mL/L x 0.77 g/mL x 45 kJ/g gasoline = 1663200 kJ
<span>The amount of energy produced by burning 48 L of gasoline was then determined to be 1663200 kJ. </span>
Answer:
Ionic, metal, organic
Explanation:
In this case, we have to analyze each compound:
-) 
In this compound, we have a non-metal atom (Cl) and a metal atom (Ca) . So, we will have a high electronegativity difference between these atoms, With this in mind, we will have an ionic bond. Ions can be produced:

The cation would be
and the anion is
. So, we will have an <u>ionic compound.</u>
-) 
In this case, we have a single atom. If we check the periodic table we will find this atom in the transition metals section (in the middle of the periodic table). So, this indicates that Cu (Copper) is a <u>metal.</u>
-) 
In this molecule, we have single bonds between carbon and hydrogen. The electronegativity difference between C and H are not high enough to produce ions. So, with this in mind, we will have covalent bonds. This is the main characteristic of <u>organic compounds. </u> (See figure 1)
potential energy with the heat given to the food
Answer:
The specific heat of the alloy 
Explanation:
Mass of an alloy
= 25 gm
Initial temperature
= 100°c = 373 K
Mass of water
= 90 gm
Initial temperature of water
= 25.32 °c = 298.32 K
Final temperature
= 27.18 °c = 300.18 K
From energy balance equation
Heat lost by alloy = Heat gain by water
[
-
] =
(
-
)
25 ×
× ( 373 - 300.18 ) = 90 × 4.2 (300.18 - 298.32)

This is the specific heat of the alloy.