Answer:
Alison wins against Kevin by 0.93 s
Step-by-step explanation:
Alison covers the last 1/4 of the distance in 3 seconds, at a constant acceleration
, we have the following equation of motion

where s (m) is the total distance, ta = 3 s is the time


Similarly, Kevin overs the last 1/3 of the distance in 4 seconds, at a constant acceleration
, we have the following equation of motion:

tk = 4 s is the time


Since
we can conclude that
, so Alison would win.
The time it takes for Alison to cover the entire track



The time it takes for Kevin to cover the entire track



So Alison wins against Kevin by 6.93 - 6 = 0.93 s
What values of b satisfy 3(2b+3)^2 = 36
we have
3(2b+3)^2 = 36
Divide both sides by 3
(2b+3)^2 = 12
take the square root of both sides
( 2b+3)} =(+ /-) \sqrt{12} \\ 2b=(+ /-) \sqrt{12}-3
b1=\frac{\sqrt{12}}{2} -\frac{3}{2}
b1=\sqrt{3} -\frac{3}{2}
b2=\frac{-\sqrt{12}}{2} -\frac{3}{2}
b2=-\sqrt{3} -\frac{3}{2}
therefore
the answer is
the values of b are
b1=\sqrt{3} -\frac{3}{2}
b2=-\sqrt{3} -\frac{3}{2}
18 pears subtract by 2 wich will equal 16 pears...
18-2=16
Let x be a random variable representing the number of skateboards produced
a.) P(x ≤ 20,555) = P(z ≤ (20,555 - 20,500)/55) = P(z ≤ 1) = 0.84134 = 84.1%
b.) P(x ≥ 20,610) = P(z ≥ (20,610 - 20,500)/55) = P(z ≥ 2) = 1 - P(z < 2) = 1 - 0.97725 = 0.02275 = 2.3%
c.) P(x ≤ 20,445) = P(z ≤ (20,445 - 20,500)/55) = P(z ≤ -1) = 1 - P(z ≤ 1) = 1 - 0.84134 = 0.15866 = 15.9%
To start this, you would multiply 5/8 by 100 because you’re looking for a percentage.
5/8 x 100 = 62.5%