Answer:
6.72M of HNO3
Explanation:
In the problem you are diluting the original HNO3 solution by the addition of some water. The final volume is:
290.7mL + 350.0mL = 640.7mL
And you are diluting the solution:
640.7mL / 350.0mL = 1.8306 times
As the original concentration was 12.3M, the final concentration will be:
12.3M / 1.8306 =
<h3>6.72M of HNO3</h3>
There are several process in the nature, which keeps water cycling between them. By Precipitation, Earth's sphere gets water which we use in several ways, and by evaporation & sublimation, it goes back to upper spheres of the Earth's atmosphere and cycle happens again & again.
Hope this helps!
Answer:

Explanation:
Hello!
In this case, given the initial conditions, we first use the 10-% quality to compute the initial entropy:

Now the entropy at the final state given the new 40-% quality:

Next step is to compute the mass of steam given the specific volume of steam at 175 kPa and the 10% quality:

Then, we can write the entropy balance:

Whereas sfg stands for the entropy of the leaving steam to hold the pressure at 150 kPa and must be greater than 0; thus we plug in:
Which is such minimum entropy change of the heat-supplying source.
Best regards!
Answer:
Each molecule contains one atom of A and one atom of B. The reaction does not use all of the atoms to form compounds.
A + B ⟶ Product
Particles: 6 8 6
If six A atoms form six product molecules, each molecule can contain only one A atom.
The formula of the product is ABₙ.
If n = 1, we need six atoms of B.
If n = 2, we need 12 atoms of B. However, we have only eight atoms of B, so the formula of the product must be AB.
Thus, 6A + 6B ⟶ 6AB, with two B atoms left over.
Explanation:
Credit goes to @znk
Hope it helps you :))