Here, the three different notation of the p-orbital in different sub-level have to generate
The value of azimuthal quantum number (l) for -p orbital is 1. We know that the magnetic quantum number
depends upon the value of l, which are -l to +l.
Thus for p-orbital the possible magnetic quantum numbers are- -1, 0, +1. So there will be three orbitals for p orbitals, which are designated as
,
and
in space.
The three p-orbital can be distinguish by the quantum numbers as-
For 2p orbitals (principal quantum number is 2)
1) n = 2, l = 1, m = -1
2) n = 2, l = 1, m = 0
3) n = 2, l = 1, m = +1
Thus the notation of different p-orbitals in the sub level are determined.
Answer:
3.7 mol Al2O3 x 4 mol Al = 7.4 mol Al 2 mol Al2O3
Explanation:
When the reaction equation is:
CaSO3(s) → CaO(s) + SO2(g)
we can see that the molar ratio between CaSO3 & SO2 is 1:1 so, we need to find first the moles SO2.
to get the moles of SO2 we are going to use the ideal gas equation:
PV = nRT
when P is the pressure = 1.1 atm
and V is the volume = 14.5 L
n is the moles' number (which we need to calculate)
R ideal gas constant = 0.0821
and T is the temperature in Kelvin = 12.5 + 273 = 285.5 K
so, by substitution:
1.1 * 14.5 L = n * 0.0821 * 285.5
∴ n = 1.1 * 14.5 / (0.0821*285.5)
= 0.68 moles SO2
∴ moles CaSO3 = 0.68 moles
so we can easily get the mass of CaSO3:
when mass = moles * molar mass
and we know that the molar mass of CaSO3= 40 + 32 + 16 * 3 = 120 g/mol
∴ mass = 0.68 moles* 120 g/mol = 81.6 g
Answer:
A polar molecule is a molecule in which one end of the molecule is slightly positive, while the other end is slightly negative. A diatomic molecule that consists of a polar covalent bond, such as HF, is a polar molecule. The two electrically charged regions on either end of the molecule are called poles, similar to a magnet having a north and a south pole. A molecule with two poles is called a dipole. Hydrogen fluoride is a dipole. A simplified way to depict polar molecules is pictured below When placed between oppositely charged plates, polar molecules orient themselves so that their positive ends are closer to the negative plate and their negative ends are closer to the positive plate
Experimental techniques involving electric fields can be used to determine if a certain substance is composed of polar molecules and to measure the degree of polarity.
For molecules with more than two atoms, the molecular geometry must also be taken into account when determining if the molecule is polar or nonpolar. is a comparison between carbon dioxide and water. Carbon dioxide (CO2) is a linear molecule. The oxygen atoms are more electronegative than the carbon atom, so there are two individual dipoles pointing outward from the C atom to each O atom. However, since the dipoles are of equal strength and are oriented in this way, they cancel each other out, and the overall molecular polarity of CO2 is zero.
Water is a bent molecule because of the two lone pairs on the central oxygen atom. The individual dipoles point from the H atoms toward the O atom. Because of the shape, the dipoles do not cancel each other out, and the water molecule is polar. In the figure, the net dipole is shown in blue and points upward.
Some other molecules are shown below (Figure below). Notice that a tetrahedral molecule such as CH4 is nonpolar. However, if one of the peripheral H atoms is replaced by another atom that has a different electronegativity, the molecule becomes polar. A trigonal planar molecule (BF3) may be nonpolar if all three peripheral atoms are the same, but a trigonal pyramidal molecule (NH3) is polar.
<span>There
are a number of ways to express concentration of a solution. This includes
molarity. Molarity is expressed as the number of moles of solute per volume of
the solution. We calculate the mass of the solute by first determining the number of moles needed. And by using the molar mass, we can convert it to units of mass.
Moles </span>(nh4)3po4 = 0.250 L (0.150 M) = 0.0375 moles (nh4)3po4
Mass = 0.0375 mol (nh4)3po4 (149.0867 g / mol) = 5.59 g (nh4)3po4