Weight expressed in Newtons is expressed in the equation whereby Weight= the mass of an object * the force of gravity. The force of gravity on earth is a constant 9.8 meters per second squared. Therefore if weight (w) = 63 N and the force of gravity is 63 N then the mass must equal 6.43 kg. Because the equation for weight is w=mg so 63 N (w) = m * 9.8 m/s^2.
Answer: The same current flows through bth cables
Explanation:
Lets have a look to the next two equations
The Ohm´s V = I*R (1)
where:
V is voltage (potencial dfference) in volts
I is the electric current in ampers
R is the electric resistance
When a voltage is applied as the electrc load is not specified ( we have to assume is the same) the current will be the same
And in the other hand the resistance R =ρL/s
Where ρ is the resistivity of the conductor L the length and s square section of the conductor
If we assume that the smaller diameter cable is able to conduct the current then nothing happens. The point is that the capacity of conduction of current depend on the section of the cable (the area)
Tables exist where to find the capacity of each cable according to its diameter.
Answer:
The weight of Earth's atmosphere exert is 
Explanation:
Given that,
Average pressure 
Radius of earth 
Pressure :
Pressure is equal to the force upon area.
We need to calculate the weight of earth's atmosphere
Using formula of pressure


Where, P = pressure
A = area
Put the value into the formula


Hence, The weight of Earth's atmosphere exert is 
Faster than. Hope this helps!!!
Answer:
625000 N/ m
Explanation:
m= 20 kg
v= 30 m/s
x= 12 cm
k = ?
Here when the mass when hits at spring its speed is
Vi= 30 m/s
Finally it comes to rest after compressing for 12 cm
i-e Vf = 0 m/s
Distance= S= 12 cm = 0.12 m
using
2aS= Vf2 - Vi2
==> 2a ×0.12 = o- 30 × 30
==> a = 900 ÷ 0.24 = 3750 m/sec2
Now we know;
F = ma
F= -Kx
==> ma= -kx
==> 20 × 3750 = -K × 0.12
==> k = 625000 N/ m