Answer:bowling ball has greater kinetic energy
Explanation:
Kinetic energy of bowling ball:
mass=m=5kg
Velocity=v=6m/s
Kinetic energy =ke
Ke=0.5 x m x v x v
Ke=0.5 x 5 x 6 x 6
Ke=90J
Kinetic energy of ship:
mass=m=120000kg
velocity=v=0.02m/s
Ke=0.5 x m x v x v
Ke=0.5 x 120000 x 0.02 x 0.02
Ke=24J
Electric current in a solid metal conductor is caused by the movement of electric charge. An electric current is the flow of electric charge. An electron current, the flow of electrons, contributes to an electric current since the electron 'carries' negative electric charge. The flow of ions also contributes to an electric current in, for example, the electrolyte of an electrochemical cell.
<span>Here the force that is applied between the electron and proton is centripetal, so equate the two forces to determine the velocity.
We know charge of the electron which for both Q1 and Q2, e = 1.60 x 10^-19 C
The Coulombs Constant k = 9.0 x 10^9
Radius r = 0.053 x 10^-9m = 5.3 x 10^-11 m
Mass of the Electron = 9.11 x 10^-31
F = k x Q1 x Q2 / r^2 = m x v^2 / r(centripetal force)
ke^2 / r^2 = m x v^2 / r => v^2 = ke^2 / m x r
v^2 = ((1.60 x 10^-19)^2 x 9.0 x 10^9) / (9.11 x 10^-31 x 5.3 x 10^-11 )
v^2 = 4.77 x 10^12 = 2.18 x 10^6 m/s
Since one orbit is the distance,
one orbit = circumference = 2 x pi x r; distance s = v x t.
v x t = 2 x pi x r => t = (2 x 3.14 x 5.3 x 10^-11) / (2.18 x 10^6)
t = 33.3 x 10^-11 / 2.18 x 10^6 = 15.27 x 10^-17 s
Revolutions per sec = 1 / t = 1 / 15.27 x 10^-17 = 6.54 x 10^15 Hz</span>
Answer:
Force constant, k = 653.3 N/m
Explanation:
It is given that,
Weight of the bag of oranges on a scale, W = 22.3 N
Let m is the mass of the bag of oranges,


m = 2.27 kg
Frequency of the oscillation of the scale, f = 2.7 Hz
We need to find the force constant (spring constant) of the spring of the scale. We know that the formula of the frequency of oscillation of the spring is given by :



k = 653.3 N/m
So, the force constant of the spring of the scale is 653.3 N/m. Hence, this is the required solution.
Answer: a) 95.07m b) 81.88 m
Explanation:
a)
For finding the distance when vehicle is going downhill we have the formula as:
Stop sight distance= Velocity*Reaction time + Velocity² / 2*g*(f constant- Grade value)
Now by AASHTO, we have for v= 45 mph= 72.4 kph, f= 0.31
Reaction time= 0.28
So putting values we get
Stop sight distance= 0.28*72.4 *1 + 
Stop sight distance= 95.07 m
b)
For finding the distance when vehicle is going uphill we have the formula as:
Stop sight distance= Velocity*Reaction time + Velocity² / 2*g*(f constant- Grade value)
Now by AASHTO, we have for v= 45 mph= 72.4 kph, f= 0.31
Reaction time= 0.28
So putting values we get
Stop sight distance= 0.28*72.4 *1 + 
Stop sight distance= 81.88 m