Answer:
a. Springs oscillate with the same frequency
Explanation:
As they both are in the same height at equilibrium, so
weight of ball must be balanced with spring force, that is
k×x=mg
k= stiffness constant of spring
x=distance stretched
g= acceleration due to gravity
so, we can write
k/m=g/x
as the g is a constant and they stretched to same distance x so the g/x term becomes constant and

and k/m is same for both the springs so they will oscillate at the same frequency.
hence option a is correct.
Answer:
-13.18°C
Explanation:
To develop the problem it is necessary to consider the concepts related to the thermal conduction rate.
Its definition is given by the function

Where,
Q = The amount of heat transferred
t = time
k = Thermal conductivity constant
A = Cross-sectional area
The difference in temperature between one side of the material and the other
d= thickness of the material
The problem says that there is a loss of heat twice that of the initial state, that is

Replacing,




Solvinf for
,

Therefore the temprature at the outside windows furface when the heat lost per second doubles is -13.18°C
Explanation:it is beause they are sharper and also have less surface area and therefore more pressure
It is definitely letter D. <span>A1 and B1 are like poles, but there is not enough information to tell whether they are north poles or south poles.
A1 and B1 is either both north poles or both south poles. Repulsion of both magnets says it all--like poles always repel while opposite poles always attract. Thus, the best conclusion to this would be choice D.</span>
Answer: The Ampère -Max-well law
Explanation:
The Ampère -Max-well law relates magnetic flux and electric current. It determines the relationship between current in association with a magnetic field and also magnetic field in association to related current.