Answer:
k = 23045 N/m
Explanation:
To find the spring constant, you take into account the maximum elastic potential energy that the spring can support. The kinetic energy of the car must be, at least, equal to elastic potential energy of the spring when it is compressed to its limit. Then, you have:
(1)
M: mass of the car = 1050 kg
k: spring constant = ?
v: velocity of the car = 8 km/h
x: maximum compression of the spring = 1.5 cm = 0.015m
You solve the equation (1) for k. But first you convert the velocity v to m/s:


The spring constant is 23045 N/m
Answer:
V₂ = 15.6 L
Explanation:
Given data:
Initial volume = 175 mL (0.175 L)
Initial pressure = 1 atm
Initial temperature = 273 K
Final temperature = -5°C (-5+273 = 268 K)
Final volume = ?
Final pressure = 1.16 kpa (1.16/101=0.011 atm)
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 1 atm × 0.175 L × 268 K / 273 K × 0.011 atm
V₂ = 46.9 L / 3.003
V₂ = 15.6 L
The answer is (4) Add enough solvent to 30.0 g of solute to make 1.0 L solution. The molarity is calculated using volume of the solution. When solute dissolving, the total volume will change. So the final volume of solution need to be 1.0 L.
Answer:
1.85 × 10⁻⁶
Explanation:
0.0003 ÷ 162 = 1.851851852 × 10⁻⁶ ⇒ 1.85 × 10⁻⁶
Hope that helps.
Answer:
The mass is recorded as 32.075 g
Explanation:
"The first digit of uncertainty is taken as the last significant digit", this is the rule for significant figures in the analysis. The balance measures the mass up to three decimal places, so it makes the most sense to note the whole figure.