answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Afina-wow [57]
2 years ago
13

A girl and a boy are riding on a merry-go-round that is turning at a constant rate. The girl is near the outer edge, and the boy

is closer to the center. For a given elapsed time interval, which rider has greater angular displacement?
Both the girl and the boy have the same nonzero angular displacement.
Both the girl and the boy have zero angular displacement.
The boy has greater angular displacement.
The girl has greater angular displacement.
Part B

A girl and a boy are riding on a merry-go-round that is turning at a constant rate. The girl is near the outer edge, and the boy is closer to the center. Who has greater linear speed?

Both the girl and the boy have zero linear speed.
The girl has greater linear speed.
Both the girl and the boy have the same nonzero linear speed.
The boy has greater linear speed.
Physics
1 answer:
skad [1K]2 years ago
3 0

(a) Both the girl and the boy have the same nonzero angular displacement.

Explanation:

The angular displacement of an object moving in uniform circular motion, as the boy and the girl on the merry-go-round, is given by

\theta= \omega t

where

\omega is the angular speed

t is the time interval

For a uniform object in uniform circular motion, all the points of the object have same angular speed. This means that the value of \omega is the same for the boy and the girl.

Therefore, if we consider the same time interval t, the boy and the girl will also have same nonzero angular displacement.

(b) The girl has greater linear speed.

Explanation:

The linear (tangential) speed of a point along the merry-go-round is given by

v=\omega r

where

\omega is the angular speed

r is the distance of the point from the centre of the merry-go-round

In this problem, the girl is near the outer edge, while the boy is closer to the centre: since the value of \omega is the same for both, this means that the value of r is larger for the girl, so the girl will also have a greater linear speed.

You might be interested in
The planet Neptune orbits the Sun. Its orbital radius is 30.130.130, point, 1 astronomical units (\text{AU})(AU)left parenthesis
lord [1]

Answer:

The distance the planet Neptune travels in a single orbit around the Sun is <em>60.2π </em><em>AU.</em>

Explanation:

As it is given that the Neptune's orbit is circular, the formula that we have to use is the circumference of a circle in order to find the distance it travels in a single orbit around the Sun. In other words, you can say that the circumference of the circle is <em>equivalent</em> to the distance it travels around the Sun in a single orbit.

<em>The circumference of the circle = Distance Travelled (in a single orbit) = 2*π*R ---- (A)</em>

Where,

<em>R = Orbital radius (in this case) = 30.1 AU</em>

<em />

Plug the value of R in the equation (A):

<em>(A) => The circumference of the circle = 2*π*(30.1)</em>

<em> The circumference of the circle = </em><em>60.2π</em>

Therefore, the distance the planet Neptune travels in a single orbit around the Sun is <em>60.2π </em><em>AU.</em>

5 0
2 years ago
Mark and Balthazar are preparing to conduct neutralization reactions in which they add a base to two different solutions, citric
zhuklara [117]
Lab safety equipment prevents damage from accidents and helps keep the people working in the lab safe. The equipment goes hand in hand with the clothing of the person. The first step would be to wear closed shoes and a lab coat.
The equipment that must be worn are goggles to protect the eyes from irritants and latex gloves to protect the skin on the hands.
5 0
2 years ago
Read 2 more answers
Which of the following statements cannot be supported by Kepler's laws of planetary motion?
gladu [14]

Answer:

The rotational speed of the four smallest planets can be determined using the rotational speeds of the four largest planets and their orbital periods.

Explanation:

Kepler's three laws are:

1) The orbits of the planets around the Sun are ellipses, with the Sun at one of the focii

2) A line connecting the Sun with each planet sweeps out equal areas in equal time intervals

3) The cube of the semi-major axis of the orbit of one planet is proportional to the square of its orbital period

There 3 laws help explaining the following statements:

- <em>A planet's distance from the sun will not be the same in six months. --> </em>using the 1st law. In fact, since the orbit is an ellipse (and not a circle), and the Sun is at one of the focii, the distance of the planet from the Sun keeps changing during the year.

-<em> A planet's speed as it moves around the sun will not be the same in six months. -</em>-> using the 2nd law. In fact, since the line connecting the Sun to the planet must cover equal areas in the same time interval, it follows that the speed of the planet cannot be constant during the year (it will be faster when closer to the sun and slower when far from the sun).

- <em>The average distance of Saturn can be calculated using the average distance of Neptune and the orbital period of both planets. </em>--> using the 3rd law. In fact, the ratio \frac{a^3}{T^2} (where a is the semi-major axis of the orbit and T the orbital period) is constant and it is the same for every planet orbiting the sun, so by knowing the data of Neptune and the orbital period of Saturn, it is possible to calculate Saturn's average distance.

Instead, the following statement:

<em>The rotational speed of the four smallest planets can be determined using the rotational speeds of the four largest planets and their orbital periods.</em>

Is not supported by any Kepler's law.

8 0
2 years ago
On a cold winter day when the temperature is −20∘C, what amount of heat is needed to warm to body temperature (37 ∘C) the 0.50 L
vlabodo [156]

Answer:

75.6J

Explanation:

Hi!

To solve this problem we must use the first law of thermodynamics that states that the heat required to heat the air is the difference between the energy levels of the air when it enters and when it leaves the body,

Given the above we have the following equation.

Q=(m)(h2)-(m)(h1)

where

m=mass=1.3×10−3kg.

h2= entalpy at 37C

h1= entalpy at -20C

Q=m(h2-h1)

remember that the enthalpy differences for the air can approximate the specific heat multiplied by the temperature difference

Q=mCp(T2-T1)

Cp= specific heat of air = 1020 J/kg⋅K

Q=(1.3×10−3)(1020)(37-(-20))=75.6J

4 0
2 years ago
Suppose a teenager puts her bicycle on its back and starts the rear wheel spinning from rest to a final angular velocity of 250
shtirl [24]

Answer: a) angular acceleration, a = 5.24rad/s^2

b) time taken for the wheel to stop, ∆t = 0.30s

Explanation:

All shown in the attachment.

3 0
2 years ago
Other questions:
  • A 3.00-kg model airplane has velocity components of 5.00 m/s due east and 8.00 m/s due north. What is the plane’s kinetic energy
    15·2 answers
  • The pfsense firewall, like other firewalls on the market, relies on __________ to expose an ip address from the private network
    12·1 answer
  • A 1.0-m-diameter vat of liquid is 2.0 m deep. The pressure at the bottom of the vat is 1.3 atm. What is the mass of the liquid i
    6·1 answer
  • To practice tactics box 13.1 hydrostatics. in problems about liquids in hydrostatic equilibrium, you often need to find the pres
    9·1 answer
  • How much voltage is required to run 0.64 A of current through a 240 resistor? Use V= IR.
    9·2 answers
  • José and Laurel measured the length of a stick's shadow during the day. Without knowing the length of the stick, which of their
    10·1 answer
  • A jet transport with a landing speed of 200 km/h reduces its speed to 60 km/h with a negative thrust R from its jet thrust rever
    8·1 answer
  • Two ice skaters, Paula and Ricardo, initially at rest, push off from each other. Ricardo weighs more than Paula.
    9·1 answer
  • At a drag race, a jet car travels 1/4 mile in 5.2 seconds. What is the final speed of the
    15·1 answer
  • Two pickup trucks each have a mass of 2,000 kg. The gravitational force between the trucks is 3.00 × 10-5 N. One pickup truck is
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!