Answer:
When the blood and the dialysate are flowing in the same direction, as the the dialysate and the blood move away from the region of higher concentration of the urea, to a region distant from the source, the concentration of urea in the blood stream and in the dialysis reach equilibrium and diffusion across the semipermeable membrane stops within the higher filter regions such as II, III, IV or V
However, for counter current flow, as the concentration of the urea in the blood stream becomes increasingly lesser the, it encounters increasingly unadulterated dialysate coming from the dialysate source, such that diffusion takes place in all regions of the filter
Explanation:
His answer was incorrect because according to ohm's law the formula used should have been R=V/I instead of multiplying and the answer should be 8ohms
Answer:

Explanation:
Here we know that the glider is accelerated uniformly from rest to final speed of 25.7 m/s in total distance of d = 46.9 m
so we will have


d = 46.9
so for uniformly accelerated motion we have



now we will find the total work done given as change in kinetic energy



now power is given as



Answer:
Distance between peak height (vertically) of projectile and mountain height = (2975.2 - 1800) = 1175.2 m
Distance between where the projectile lands and ship B = (3188.8 - 3110) = 8.8 m
Explanation:
Given the velocity and angle of shot of the projectile, one can calculate the range and maximum height attained by the projectile.
H = (v₀² Sin²θ)/2g
v₀ = initial velocity of projectile = 2.50 × 10² m/s = 250 m/s
θ = 75°, g = 9.8 m/s²
H = 250² (Sin² 75)/(2 × 9.8) = 2975.2 m
Range of projectile
R = v₀² (sin2θ)/g
R = 250² (sin2×75)/9.8
R = 250² (sin 150)/9.8 = 3188.8 m
Height of mountain = 1.80 × 10³ = 1800 m
Maximum height of projectile = 2975.2 m
Distance between peak height (vertically) of projectile and mountain height = 2975.2 - 1800 = 1175.2 m
Distance of ship B from ship A = 2.5 × 10³ + 6.1 × 10² = 2500 + 610 = 3110 m
Range of projectile = 3188.8 m
Distance between where the projectile lands and ship B = 3188.8 - 3110 = 8.8 m