A perpetual motion machine is (as the name implies) a machine that moves perpetually; it never stops. Ever. So if you created one today and set it going, it would keep on going until the Big Freeze<span>. Calling that “a long time” is an understatement of epic proportions</span>
Answer:
15.7 m/s
Explanation:
The motion of the cannonball is a accelerated motion with constant acceleration g = 9.8 m/s^2 towards the ground (gravitational acceleration). Therefore, the velocity of the ball at time t is given by:

where
u = 0 is the initial velocity
g = 9.8 m/s^2 is the acceleration
t is the time
If we substitute t=1.6 s into the equation, we find the final velocity of the cannonball:

Explanation:it is beause they are sharper and also have less surface area and therefore more pressure
1000 kcal because you only get 10% of the energy of the thing you eat
Answer:
a) factor 
b) factor 
c) factor 
d) factor 
Explanation:
Time period of oscillating spring-mass system is given as:


where:
frequency of oscillation
mass of the object attached to the spring
stiffness constant of the spring
a) <u>On doubling the mass:</u>
- New mass,

<u>Then the new time period:</u>




where the factor
as asked in the question.
b) On quadrupling the stiffness constant while other factors are constant:
New stiffness constant, 
<u>Then the new time period:</u>

where the factor
as asked in the question.
c) On quadrupling the stiffness constant as well as mass:
New stiffness constant, 
New mas, 
<u>Then the new time period:</u>

where factor
as asked in the question.
d) On quadrupling the amplitude there will be no effect on the time period because T is independent of amplitude as we can observe in the equation.
so, factor 