I don't understand what you mean by "depth" of the steps. The flat part of the step has a front-to-back dimension, and the 'riser' has a height. I don't care about the horizontal dimension of the step because it doesn't add anything to the climber's potential energy. And if the riser of each step is 20cm high, then 3,234 of them only take him (3,234 x 0.2) = 646.8 meters up off the ground. So something is definitely fishy about the steps.
Fortunately, we don't need to worry at all about the steps in order to derive a first approximation to the answer ... one that's certainly good enough for high school Physics.
In order to lift his bulk 828 meters from the street to the top of the Burj, the climber has to provide a force of 800 newtons, and maintain it through a distance of 828 meters. The work [s]he does is (force) x (distance) = <em>662,400 joules. </em>
At the rear.
PWC stands for personal watercraft, and it is a small powerboat. The main components of a PWC are the hull (body of the boat), deck (surface where people walk/stand), throttle (controls speed), steering nozzle and water intake.
Answer:
Radiation therapy
Explanation:
Her doctor is more likely to use radiation therapy to irradiate the cancerous cells on the skin. The doctor uses soft x-rays to kill the cancer cells. The therapy is used even after surgery as it has the advantage of delaying the advancement of future cancers.
The crate only moves horizontally, so its net vertical force is 0. The only forces acting in the vertical direction are the crate's weight (pointing downward) and the normal force of the surface on the crate (pointing upward). By Newton's second law, we have
∑ <em>F</em> (vertical) = <em>n</em> - <em>mg</em> = 0 → <em>n</em> = <em>mg</em> = 1876 N
where <em>n</em> is the magnitude of the normal force.
In the horizontal direction, the crate is moving at a constant speed and thus with no acceleration, so it's completely in equilibrium and the net horizontal force is also 0. The only forces acting on it in this direction are the 747 N push (pointing in the direction of the crate's motion) and the kinetic friction opposing it (pointing in the opposite direction). By Newton's second law,
∑ <em>F</em> (horizontal) = 747 N - <em>f</em> = 0 → <em>f</em> = 747 N
The frictional force is proportional to the normal force by a factor of the coefficient of kinetic friction, <em>µ</em>, such that
<em>f</em> = <em>µn</em> → <em>µ</em> = <em>f</em> / <em>n</em> = (747 N) / (1876 N) ≈ 0.398188 ≈ 0.40
Answer:
There would be a pressure drop in the direction of the higher opening. This will force air to move in from the lower opening and force it to leave through the higher opening. This will create a convectional movement of air, cooling and ventilating the tunnel.
Explanation:
This is in accordance with bernoulli's law of fluid flow which states that the pressure exerted by a moving fluid is lesser than it would exert if it were at rest.