Answer:
v= 2413.5 m/s
Explanation:
maximum change of speed of rocket
=(initial exhaust velocity)×ln [(initialmass/finalmass)]
let initial mass= m
final mass = m-m(4/5) = m/5
[since the 80% of mass which is fuel is exhausted]
V-0 = 1500 ln (1/0.2)
V= 1500×1.609 = 2413.5 m/s
therefore, its exhaust speed v= 2413.5 m/s
Answer:
you must throw 3 snowballs
Explanation:
We can solve this exercise using the concepts of conservation of the moment, let's define the system as formed by the refrigerator and all the snowballs. Let's write the moment
Initial. Before bumping that refrigerator
p₀ = n m v₀
Where n is the snowball number
Final. When the refrigerator moves
pf = (n m + M) v
The moment is preserved because the forces during the crash are internal
n m v₀ = (n m + M) v
n m (v₀ - v) = M v
n = M/m v/(vo-v)
Let's look for the initial velocity of the balls, suppose the person throws them with the maximum force if it slides in the snow (F = 100N), let's use the second law and Newton
F = m a
a = F / m
The distance the ball travels from zero speed to maximum speed is the extension of the arm (x = 1 m), let's look kinematically for the speed of the balls when leaving the arm
v₁² = v₀² + 2 a x
v₁² = 0+ 2 (100/1) 1
v₁ = 14.14 m / s
This is the initial speed for the crash
v₀ = v = 14.14 m / s
Let's calculate
n = M/m v/ (v₀-v)
n = 10/1 3 / (14.14 -3)
n = 2.7 balls
you must throw 3 snowballs
Answer:

Explanation:
As we know that water from the fountain will raise to maximum height

now by energy conservation we can say that initial speed of the water just after it moves out will be




Now we can use Bernuolli's theorem to find the initial pressure inside the pipe



Answer:
James is correct here as the force of hand pushing upwards is always more than the force of hand pushing down
Explanation:
Here we know that one hand is pushing up at some distance midway while other hand is balancing the weight by applying a force downwards
so here we can say
Upwards force = downwards Force + weight of snow
while if we find the other force which is acting downwards
then for that force we can say that net torque must be balanced
so here we have

so here we have

so here we can say that upward force by which we push up is always more than the downwards force
<span>If two wheels are exactly the same but spin at different speeds, wheel b is twice te speed of wheel a, it is possible to find the ratio of the magnitude of radial acceleration at a singular point of the rim on wheel be to the spot is four.</span>