Answer:

Explanation:
Newton's law of universal gravitation states that the force experimented by a satellite of mass m orbiting Mars, which has mass
at a distance r will be:

where
is the gravitational constant.
This force is the centripetal force the satellite experiments, so we can write:

Putting all together:

which means:
![r=\sqrt[3]{\frac{GM}{4\pi^2}T^2}](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7BGM%7D%7B4%5Cpi%5E2%7DT%5E2%7D)
Which for our values is:
![r=\sqrt[3]{\frac{(6.67\times10^{-11}Nm^2/kg^2)(6.39\times10^{23} kg)}{4\pi^2}(1.026\times24\times60\times60s)^2}=20395282m=20395.3km](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B%286.67%5Ctimes10%5E%7B-11%7DNm%5E2%2Fkg%5E2%29%286.39%5Ctimes10%5E%7B23%7D%20kg%29%7D%7B4%5Cpi%5E2%7D%281.026%5Ctimes24%5Ctimes60%5Ctimes60s%29%5E2%7D%3D20395282m%3D20395.3km)
Since this distance is measured from the center of Mars, to have the height above the Martian surface we need to substract the radius of Mars R=3389.5 km
, which leaves us with:

Answer:

Explanation:
Given that initially ball moves in the horizontal direction ,it means that the velocity in the vertical direction is zero.
Horizontal distance = 13 m
Vertical distance = 57 cm
Lets take time to cover 57 cm distance in vertical direction is t.
We know that g is the constant acceleration in the vertical direction so we can apply the equation of motion in the vertical direction.

Here 
S= 57 cm

t=0.34 s
Now in the horizontal direction

Here x=13 m
t= 0.34 s
So


So the initial speed of ball is 38.13 m/s.