Answer:
label A= radio waves, label C= infrared, Label D= visible Light, Label G= gamma rays.
Explanation:
hope it helped??
can i have a thanks, a 5 star, and a brainliest please
can we be friends
There are huge losses in the transmission, production and usage of electricity and the reduction of these losses in order to save electricity is called as conservation of energy.
As per the statistics, there is loss of nearly 4% while the transmission of electricity. Like wise during production also, lot of electricity get wasted due to the inefficient material used. None of the production material nor the equipment used have 100% efficiency and thus there is always a possibility of energy wastage.
When it is said that the energy is wasted , it simply means that the energy production which should have been 100% as per calculation is not completely derived from the source due to the inefficient conversion process. For example, a turbine while rotating must convert 100 % of the water energy or water falling on it into electrical energy but the turbine is not able to do so as some of the water is lost or its energy is lost before conversion while going through the mechanical process.
A lady bug moves 10 cm forward and 5 cm backwards
so total distance moved by lady bug = 10 + 5 = 15 cm
total time taken by the lady bug
t = 20 s
so the average speed is given as



so its average speed is 0.75 cm/s
Answer:
560 N/m
Explanation:
F = kx
75 N = k (0.61 m − L)
210 N = k (0.85 m − L)
Divide the equations:
2.8 = (0.85 − L) / (0.61 − L)
2.8 (0.61 − L) = 0.85 − L
1.708 − 2.8L = 0.85 − L
0.858 = 1.8L
L = 0.477
Plug into either equation and find k.
75 = k (0.61 − 0.477)
k = 562.5
Rounded to two significant figures, k = 560 N/m.
Answer:
Force must be applied to m₁ to move the group of rocks from the road at 0.250 m/s² = 436 N
Explanation:
Total force required = Mass x Acceleration,
F = ma
Here we need to consider the system as combine, total mass need to be considered.
Total mass, a = m₁+m₂+m₃ = 584 + 838 + 322 = 1744 kg
We need to accelerate the group of rocks from the road at 0.250 m/s²
That is acceleration, a = 0.250 m/s²
Force required, F = ma = 1744 x 0.25 = 436 N
Force must be applied to m₁ to move the group of rocks from the road at 0.250 m/s² = 436 N