By definition, the kinetic energy is given by:
K = (1/2) * m * v ^ 2
where
m = mass
v = speed
We must then find the speed of both objects:
blue puck
v = root ((0) ^ 2 + (- 3) ^ 2) = 3
gold puck
v = root ((12) ^ 2 + (- 5) ^ 2) = 13
Then, the kinetic energy of the system will be:
K = (1/2) * m1 * v1 ^ 2 + (1/2) * m2 * v2 ^ 2
K = (1/2) * (4) * (3 ^ 2) + (1/2) * (6) * (13 ^ 2)
K = <span>
525</span> J
answer
The kinetic energy of the system is<span>
<span>525 </span></span>J
<span>We put a motion detector at </span>one end of the track<span> and put a cart on the track. ... Next, we put a motorized fan on the cart and let it push the cart down the track. ... This is what I would expect based on the velocity graph, since </span>acceleration<span> equals the slope of the velocity graph, which remains</span>constant<span> in time.</span>
An action-reaction pair would be a pair in which one of the elements exerts a force on the other element (action), and then the other element would respond to this force by exerting another force in the opposite direction (reaction).
From the given choices, we will see that:
For choice A, the moon exerts a force on the earth by pulling it (action) and the earth responds to this force by pulling the moon (reaction in opposite direction of the action).
Therefore, the correct choice would be:
A. <span>The Moon Pulls on Earth, and Earth pulls back on the moon.</span>
Answer:
a rock of 50kg should be placed =drock=0.5m from the pivot point of see saw
Explanation:
τchild=τrock
Use the equation for torque in this equation.
(F)child(d)child)=(F)rock(d)rock)
The force of each object will be equal to the force of gravity.
(m)childg(d)child)=(m)rockg(d)rock)
Gravity can be canceled from each side of the equation. for simplicity.
(m)child(d)child)=(m)rock(d)rock)
Now we can use the mass of the rock and the mass of the child. The total length of the seesaw is two meters, and the child sits at one end. The child's distance from the center of the seesaw will be one meter.
(25kg)(1m)=(50kg)drock
Solve for the distance between the rock and the center of the seesaw.
drock=25kg⋅m50kg
drock=0.5m
Answer: 800N
Explanation:
Given :
Mass of ball =0.8kg
Contact time = 0.05 sec
Final velocity = initial velocity = 25m/s
Magnitude of the average force exerted on the wall by the ball is can be calculated using the relation;
Force(F) = mass(m) * average acceleration(a)
a= (initial velocity(u) + final velocity(v))/t
m = 0.8kg
u = v = 25m/s
t = contact time of the ball = 0.05s
Therefore,
a = (25 + 25) ÷ 0.05 = 1000m/s^2
Therefore,
Magnitude of average force (F)
F=ma
m = mass of ball = 0.8
a = 1000m/s^2
F = 0.8 * 1000
F = 800N