Answer:
0.0002°, 0.1691°, 0.338°
Explanation:
Difference between the two line = 5.97 * 10-⁸m
d = 1 / N
N = 5.0 * 10³
d = 2.0 * 10⁴m
nL = Nsin¤
For first order
588.995 * 10-⁹ = 2.0 * 10-⁴ sin ¤
Sin¤ = 2.944*10-³
¤ = sin-¹ 0.002944
¤ = 0.1687°
First order ¤ =
Sin-¹(589.592*-⁹ / 2.0 * 10-⁴)
Sin-¹ (0.002947) = 0.1689°
Angular separation = 0.1689 - 0.1687 = 0.0002°
Second order ¤ = sin-¹ [2 (589.59*10-⁹ / 2.0*10-⁴)] = sin-¹ (0.005895)
Second order ¤ = 0.3378°
Angular difference = 0.3378° - 0.1687° = 0.1691°
Third order ¤ = sin-¹ [3(589.59*10-⁹ /2.0*10-⁴] = 0.5067°
Angular difference = 0.5067° - 0.1687° = 0.338°
1) draw a diagram.
2) label diagram. (split the 100 degrees into 50, (which is right down the middle) to make a right angle triangle.)
3) since its a free body diagram, the forces known must be labelled. (force of gravity). this shows that the straight vertical line of the right angle triangle is Fg (force gravity). label it.
4) use trigonometry. rearrange the equation to solve for what needs to be known.
angles known: 50 (split 100 in half to make a right angle triangle), 90 (since its right angle), and 40 (180-90-50 = 40)
sides known: vertical lined up with the 90 degree angle. Fg. --> fg=mg=500N x 9.81m/s^2 = 4905N
use formula: sin or cos
i used sin. sin(40) = 4905 / ?
- times '?' on both sides. : sin(40) x '?' = 4905
-divide both sides by sin(40): '?' = 4905/ sin(40)
--> Solve.
Answer:
<em>A) Beam B carries twice as many photons per second as beam A.</em>
Explanation:
If we have two waves with the same wavelength, then their intensity is proportional to their power, or the energy per unit time.
We also know that the amount of photon present in an electromagnetic beam is proportional to the energy of the beam, hence the amount of beam per second is proportional to the power.
With these two facts, we can say that the intensity is a measure of the amount of photon per second in an electromagnetic beam. So we can say that <em>beam B carries twice as more power than beam A, or Beam B carries twice as many photons per second as beam A.</em>
Answer:
a. 150 N
Explanation:
Gravitational Force: This is the force that act on a body under gravity.
The gravitational force always attract every object on or near the earth's surface. The earth therefore, exerts an attractive force on every object on or near it.
The S.I unit of gravitational force is Newton(N).
Mathematically, gravitational force of attraction is expressed as
(i) F = GmM/r² ........................ Equation 1 ( when it involves two object of different masses on the earth)
(ii) F = mg ............................... Equation 2 ( when it involves one mass and the gravitational field).
Given: m = 17 kg, g = 8.8 m/s²
Substituting into equation 2,
F = 17(8.8)
F = 149.6 N
F ≈ 150 N.
Thus the gravitational force = 150 N
The correct option is a. 150 N
Answer:
w = √ 1 / CL
This does not violate energy conservation because the voltage of the power source is equal to the voltage drop in the resistence
Explanation:
This problem refers to electrical circuits, the circuits where this phenomenon occurs are series RLC circuits, where the resistor, the capacitor and the inductance are placed in series.
In these circuits the impedance is
X = √ (R² + (
-
)² )
where Xc and XL is the capacitive and inductive impedance, respectively
X_{C} = 1 / wC
X_{L} = wL
From this expression we can see that for the resonance frequency
X_{C} = X_{L}
the impedance of the circuit is minimal, therefore the current and voltage are maximum and an increase in signal intensity is observed.
This does not violate energy conservation because the voltage of the power source is equal to the voltage drop in the resistence
V = IR
Since the contribution of the two other components is canceled, this occurs for
X_{C} = X_{L}
1 / wC = w L
w = √ 1 / CL