Answer: The
for the given chemical reaction is -175.51 kJ/mol
Explanation: Enthalpy change of the reaction is defined as the amount of heat released or absorbed in a given chemical reaction.
Mathematically,

We are given a chemical reaction. The reaction follows:




Enthalpy change for the reaction of he given chemical reaction is given by:

Putting the values in above equation, we get


Answer:
The bond dissociation energy to break 4 bonds in 1 mol of CH is 1644 kJ
Explanation:
Since there are 4 C-H bonds in CH₄, the bond dissociation energy of 1 mol of CH₄ is 4 × bond dissociation energy of one C-H bond.
From the table one mole is C-H bond requires 411 kJ, that is 411 kJ/mol. Therefore, 4 C-H bonds would require 4 × 411 kJ = 1644 kJ
So, the bond dissociation energy to break 4 bonds in 1 mol of CH₄ is 1644 kJ
<span>15.4 milligrams
The ideal gas law is
PV = nRT
where
P = pressure of the gas
V = volume of the gas
n = number of moles of gas
R = Ideal gas constant (8.3144598 L*kPa/(K*mol) )
T = absolute temperature.
So let's determine how many moles of gas has been collected.
Converting temperature from C to K
273.15 + 25 = 298.15 K
Converting pressure from mmHg to kPa
753 mmHg * 0.133322387415 kPa/mmHg = 100.3917577 kPa
Taking idea gas equation and solving for n
PV = nRT
PV/RT = n
n = PV/RT
Substituting known values
n = PV/RT
n = (100.3917577 kPa 0.195 L) / (8.3144598 L*kPa/(K*mol) 298.15 K)
n = (19.57639275 L*kPa) / (2478.956189 L*kPa/(mol) )
n = 0.007897031 mol
So we have a total of 0.007897031 moles of gas particles.
Now let's get rid of that percentage that's water vapor. The percentage of water vapor is the vapor pressure of water divided by the total pressure. So
24/753 = 0.03187251
The portion of hydrogen is 1 minus the portion of water vapor. So
1 - 0.03187251 = 0.96812749
So the number of moles of hydrogen is
0.96812749 * 0.007897031 mol = 0.007645332 mol
Now just multiple the number of moles by the molar mass of hydrogen gas. Start with the atomic weight.
Atomic weight hydrogen = 1.00794
Molar mass H2 = 1.00794 * 2 = 2.01588 g/mol
Mass H2 = 2.01588 g/mol * 0.007645332 mol = 0.015412073 g
Rounding to 3 significant figures gives 0.0154 g = 15.4 mg</span>
Answer:
The two constitutionally isomeric compounds that result from the reaction between sodium nitrite (NaNO2) and 2−Iodooctane are the following: