answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Setler79 [48]
2 years ago
6

To determine the percentage of water in a hydrated salt, a student heated a 1.2346 g sample of the salt for 30 minutes; when coo

led to room temperature, the sample weighed 1.1857 g. After the sample was heated for an additional 10 minutes and again cooled to room temperature, the sample weighed 1.1632 g. Which of the following should the student do next?(A) Use the smallest mass value to calculate the percentage of water in the hydrated salt.(B) Repeat the experiment with a new sample of the same mass and average the results.(C) Repeat the experiment with a new sample that has a different mass.(D) Reheat the sample until its mass is constant.(E) Use the average of the mass values obtained after the two heatings to calculate the percentage of water in the hydrated
salt.
Chemistry
1 answer:
Yakvenalex [24]2 years ago
5 0

Answer:

The correct answer is option D: Reheat the sample until its mass is constant.

Explanation:

The student should reheat the sample until its mass will be constant. This to avoid that the percentage contains other substances than only water. During heating, hydrated salt loses its water. He only wants to know the percentage of water, so until the mass keeps changing a lot ( isn't constant), means there is still both water and salt. If the mass doesn't change anymore, means that all the water has been heated and evaporated. Then he can calculate the percentage of salt in the sample, and thus the percentage water as well.

You might be interested in
Each orbit surrounding an atom is allowed _____.
Juli2301 [7.4K]
Two electrons is your answer glad to help!
4 0
2 years ago
Read 2 more answers
What is the value of Keq for the reaction expressed in scientific notation? 2.1 x 10-2 2.1 x 102 1.2 x 103 1.2 x 10-3
Lady_Fox [76]

Complete question:

Consider the reaction.

At equilibrium at 600 K, the concentrations are as follows.

2HF -----> H₂ + F₂

[HF] = 5.82 x 10-2 M

[H2] = 8.4 x 10-3 M

[F2] = 8.4 x 10-3 M

What is the value of Keq for the reaction expressed in scientific notation?

2.1 x 10-2

2.1 x 102

1.2 x 103

1.2 x 10-3

Answer:

2.1 × 10^-2

Explanation:

Kequilibrum(Keq) = product/reactant

Equation for the reaction :

2HF -----> H₂ + F₂

Therefore,

Keq = [H2][F2] / [HF]^2

Keq = [8.4 x 10-3][8.4 x 10-3] / [5.82 x 10-2]^2

Keq = [70.56 × 10^(-3 + - 3)]/[33.8724 × 10^(-2×2)]

Keq = [70.56 × 10^-6] / [33.8724 × 10^-4]

Keq = 2.0665 × 10^(-6 - (-4))

Keq = 2.0665 × 10^(-6 + 4)

Keq = 2.1 × 10^-2

7 0
2 years ago
Read 2 more answers
Barry Bonds swings a bat which has a mass of 1.5 kg at a velocity of 55 m/s. How many joules of kinetic energy could he give to
larisa86 [58]
KE = mv2
2
KE = ? J
m = 1.5 kg
v = 55 m/s
KE = 1.5 kg x (55 m/s)2
2
KE = 2,268.75 J
8 0
2 years ago
Read 2 more answers
If a 0.4856 gram sample of khp is dissolved in sufficient water to prepare 250 ml of solution, and 25 ml of the solution require
dangina [55]

Mass of potassium hydrogen pthalate KHP is 0.4856 g, its molar mass is 204.22 g/mol, number of moles of KHP can be calculated as follows:

n=\frac{m}{M}

Here, m is mass and M is molar mass, putting the values,

n=\frac{0.4856 g}{204.22 g/mol}=0.00237 mol

This will be number of moles of NaOH at equivalent point.

Detailed calculations:

Molarity is defined as number of moles in 1 L of solution, for 250 mL of solution, molarity will be:

M=\frac{0.00237 mol}{250 \times 10^{-3}L}=0.009511 M

For 25 mL, apply dilution law as follows:

M_{1}V_{1}=M_{2}V_{2}

Putting the values,

0.009511\times 250=M_{2}\times 25 mL

On rearranging,

M_{2}=\frac{0.009511\times 250}{25}=0.09511 M

Convert molarity into number of moles,

n=M\times V=0.09511 mol/L\times 25\times 10^{-3}L=0.00237 mol

At equivalent point, number of moles of KHP will be equal to NaOH, thus, number of moles of NaOH will be 0.00237 mol.

Calculation for molarity:

Volume of NaOH is 18.75 mL, thus, molarity can be calculated as follows:

M=\frac{n}{V}

Putting the values,

M=\frac{0.00237 mol}{18.75\times 10^{-3}L}=0.1264 M

Therefore, molarity of NaOH is 0.1264 M

7 0
2 years ago
You have two 500.0 ml aqueous solutions. solution a is a solution of a metal nitrate that is 8.246% nitrogen by mass the ionic c
almond37 [142]

1) Answer is: the ionic compound in the solution b is K₂CrO₄ (potassium chromate).

Ionic compound in solution b has two potassiums (oxidation number +1), one chromium (oxidation number +6) and four oxygens. Oxidation number of oxygen is -2 and compound has neutral charge:

2 · (+1) + 6 + x · (-2) = 0.

x = 4; number of oxygen atoms.

2) Answer is: the ionic compound in solution a is AgNO₃ (silver nitrate).

ω(N) = 8.246% ÷ 100%.

ω(N) = 0.08246; mass percentage of nitrogen.

M(MNO₃) = M(N) ÷ ω(N).

M(MNO₃) = 14 g/mol ÷ 0.08246.

M(MNO₃) = 169.8 g/mol; molar mass of metal nitrate.

M(M) = M(MNO₃) - M(N) - 3 · M(O).

M(M) = 169.8 g/mol - 14 g/mol - 3 · 16 g/mol.

M(M) = 107.8 g/mol; atomic mass of metal, this metal is silver (Ag).

3) Balanced chemical reaction:  

2AgNO₃(aq) + K₂CrO₄(aq) → Ag₂CrO₄(s) + 2KNO₃(aq).

Ionic reaction:  

2Ag⁺(aq) + 2NO₃(aq) + 2K⁺(aq) + CrO₄²⁻(aq) → Ag₂CrO₄(s) + 2K⁺(aq) + 2NO₃⁻(aq).

Net ionic reaction: 2Ag⁺(aq) + CrO₄²⁻(aq) → Ag₂CrO₄(s).

Answer is: the blood-red precipitate is silver chromate (Ag₂CrO₄).

4) m(Ag₂CrO₄) = 331.8 g; mass of solid silver chromate.

n(Ag₂CrO₄) = m(Ag₂CrO₄) ÷ M(Ag₂CrO₄).

n(Ag₂CrO₄) = 331.8 g ÷ 331.8 g/mol.

n(Ag₂CrO₄) = 1 mol; amount of silver chromate.

From balanced chemical reaction: n(Ag₂CrO₄) : n(AgNO₃) = 1 : 2.

n(AgNO₃) = 2 · 1 mol.

n(AgNO₃) = 2 mol.

m(AgNO₃) = n(AgNO₃) · M(AgNO₃).

m(AgNO₃) = 2 mol · 169.8 g/mol.

m(AgNO₃) = 339.6 g; mass of silver nitrate.

m(AgNO₃) = m(K₂CrO₄).

m(K₂CrO₄) = 339.6 g; mass of potassium chromate.

n(K₂CrO₄) = m(K₂CrO₄) ÷ M(K₂CrO₄).

n(K₂CrO₄) = 339.6 g ÷ 194.2 g/mol.

n(K₂CrO₄) = 1.75 mol; amount of potassium chromate.

5) Chemical reaction of dissociation of silver nitrate in water:

AgNO₃(aq) → Ag⁺(aq) + NO₃⁻(aq).

V(solution a) = 500 mL ÷ 1000 mL/L.

V(solution a) = 0.5 L; volume of solution a.

c(AgNO₃) = n(AgNO₃) ÷ V(solution a).

c(AgNO₃) = 2 mol ÷ 0.5 L.

c(AgNO₃) = 4 mol/L = 4 M.

From dissociation of silver nitrate: c(AgNO₃) = c(Ag⁺) = c(NO₃⁻).

c(Ag⁺) = 4 M; the concentration of silver ions in the original solution a.

c(NO₃⁻) = 4 M; the concentration of silver ions in the original solution a.

6) Chemical reaction of dissociation of potssium chromate in water:

K₂CrO₄(aq) → 2K⁺(aq) + CrO₄²⁻(aq).

V(solution b) = 500 mL ÷ 1000 mL/L.

V(solution b) = 0.5 L; volume of solution b.

c(K₂CrO₄) = n(K₂CrO₄) ÷ V(solution b).

c(AgNO₃) = 1.75 mol ÷ 0.5 L.

c(AgNO₃) = 3.5 mol/L = 3.5 M.

From dissociation of silver nitrate: c(K₂CrO₄) = c/2(K⁺) = c(CrO₄²⁻).

c(K⁺) = 7 M; the concentration of potassium ions in the original solution b.

c(CrO₄²⁻) = 3.5 M; the concentration of silver ions in the original solution b.

7) V(final solution) = V(solution a) + V(solution b).

V(final solution) = 500.0 mL + 500.0 mL.

V(final solution) = 1000 mL ÷ 1000 mL/L.

V(final solution) = 1 L.

n(NO₃⁻) = 2 mol.

c(NO₃⁻) = n(NO₃⁻) ÷ V(final solution)

c(NO₃⁻) = 2 mol ÷ 1 L.

c(NO₃⁻) = 2 M; the concentration of nitrate anions in final solution.

8) in the solution b there were 3.5 mol of potassium cations, but one part of them reacts with 2 moles of nitrate anions:

K⁺(aq) + NO₃⁻(aq) → KNO₃(aq).

From chemical reaction: n(K⁺) : n(NO₃⁻) = 1 : 1.

Δn(K⁺) = 3.5 mol - 2 mol.

Δn(K⁺) = 1.5 mol; amount of potassium anions left in final solution.

c(K⁺) = Δn(K⁺) ÷ V(final solution).

c(K⁺) = 1.5 mol ÷ 1 L.

c(K⁺) = 1.5 M; the concentration of potassium cations in final solution.

4 0
2 years ago
Other questions:
  • A gold atom has a radius of 145 pm. If you could string gold atoms like beads on a thread, how many atoms would you need to have
    5·1 answer
  • The first step in the Ostwald process for producing nitric acid is 4NH3(g) + 5O2(g) --> 4NO(g) + 6H2O(g). If the reaction of
    9·2 answers
  • How is a yeast cell different from an onion skin cell? Yeast can reproduce by budding. Onion cells do not reproduce by budding.
    8·2 answers
  • If a neutral atom has 10 neutrons and 8 electrons how many protons does it have????
    8·2 answers
  • The mineral rhodochrosite [manganese(II) carbonate, MnCO3] is a commercially important source of manganese. Write a half-reactio
    7·1 answer
  • Complete the following sentence: The cathode in a voltaic cell is the electrode _____________.
    5·1 answer
  • You are instructed to deliver about 2 mL of water from a buret with a precision of 0.01 mL. Which of the following measured volu
    14·1 answer
  • Beer brewing begins with steeping grains in hot water, releasing the sugars inside. The sugar water is then heated to a boil and
    12·1 answer
  • Give the coordination number, the charge of the central metal ion, and select the correct name in each coordination compound: A.
    12·1 answer
  • elabora un cuadro comparativo como el del modelo , en el que describas los planteamientos filosoficos de tales , anaximenes y an
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!