First, we need to determine the half reaction of magnesium. It would be expressed as:
Mg2+ + 2e- = Mg
Given the mass of magnesium metal that is produced, we calculate the total charge of the electrolysis by the relations we can get from the half reaction. We do as follows:
4.50 kg Mg ( 1000 g / 1 kg ) ( 1 mol / 24.305 g ) ( 2 mol e- / 1 mol Mg ) ( 96500 C / 1 mol e- ) = 35733388.2 C
We are given the applied EMF in units of V. This value is equal to J/C. So, 5 V is equal to 5 J/C.
35733388.2 C (5 J/C) = 178666941 J
178666941 J ( 1 kW-h / 3.6x10^6 J ) = 49.63 kW-h
When you say the solution is hypertonic, it means that the solution has a higher osmotic pressure. The formula for this is:
P = iMRT,
for strong electrolytes, i = number of ions.
for nonelectrolytes, i = 1
1. The P for sucrose solution which is a nonelectrolyte (assuming room temp):
P = (1)(1m)(8.314 J/mol-K)(298 K)
P = 2477.572 Pa
The P for NaCl solution, which is a strong electrolyte:
P = (2)(1 m)(8.314)(298 K)
P = 4955.144 Pa
<em>So, that means that NaCl is more hypertonic than the sucrose solution.</em>
2. For the second question, the P for the combination of 1 m glucose (nonelectrolyte) and 1 m sucrose is:
P = (1)(1 m)(8.314)(298 K) + (1)(1)(8.314)(298 K) = 4955.144 Pa
<em>In this case, the osmotic pressures are now equal. It is not hypertonic, but isotonic.</em>
Answer:
The specific heat capacity of the metal is 0.843J/g°C
Explanation:
Hello,
To determine the specific heat capacity of the metal, we have to work on the principle of heat loss by the metal is equals to heat gained by the water.
Heat gained by the metal = heat loss by water + calorimeter
Data,
Mass of metal (M1) = 512g
Mass of water (M2) = 325g
Initial temperature of the metal (T1) = 15°C
Initial temperature of water (T2) = 98°C
Final temperature of the mixture (T3) = 78°C
Specific heat capacity of metal (C1) = ?
Specific heat capacity of water (C2) = 4.184J/g°C
Heat loss = heat gain
M2C2(T2 - T3) = M1C1(T3 - T1)
325 × 4.184 × (98 - 78) = 512 × C1 × (78 - 15)
1359.8 × 20 = 512C1 × 63
27196 = 32256C1
C1 = 27196 / 32256
C1 = 0.843J/g°C
The specific heat capacity of the metal is 0.843J/g°C
<span>Density is a value for
mass, such as kg, divided by a value for volume, such as m3. Density is a
physical property of a substance that represents the mass of that substance per
unit volume. We calculate as follows:
PV = nRT
PV = mRT/ Molar mass
m/V = P(molar mass)/RT
Density = P(molar mass)/RT
Density = 2.0 ( 30.97 ) / 0.08206 ( 20 + 273.15) = 2.57 g/L <----First option</span>
Answer:
B. 45k
The human body is about 60 to 70% water.
(: