Answer:
There is an inward force acting on the can
Explanation:
This inward force is known as Centripetal force and it is responsible for making the can whirl on the end of a string in circle and it is also directed towards the center around which the can is moving.
Answer:
The amount of charge the space shuttle collects is -1.224nC
Explanation:
The magnitude of Electric potential is given as;
V = kq/r
where;
V is the electric potential in volts
k is coulomb's constant
r is the radius of the sphere or distance moved by the charge
given; V = -1.1 V, k = 8.99 x 10⁹ Nm²/C², r = 10m
Substituting this values in the above equation, we estimate the amount of charge space shuttle collects.
q = (V*r)/k
q = (-1.1 *10)/(8.99 x 10⁹ )
q = -1.224 X 10⁻⁹ C
q = -1.224nC
Therefore, the amount of charge the space shuttle collects is -1.224nC
Answer:
C. a few days
Explanation:
The evidence that we will have to investigate is the gunshot residue on the body of the suspect. When a person fires a gun there will be a deposition of material from the components of the chemicals present in the gun. This deposit is called gunshot residue and consists of particles of the propellant or explosive primer.
Experimentation has shown that the period of time that is person will test possible for gunshot residue is 5.27 days.
Answer:
Part(a): The angular acceleration is
.
Part(b): The angular displacement is
.
Explanation:
Part(a):
If
be the initial angular speed, final angular speed and angular acceleration of the centrifuge respectively, then from rotational kinematic equation, we can write

where '
' is the time taken by the centrifuge to increase its angular speed.
Given,
,
and
. From equation (
), the angular acceleration is given by

Part(b):
Also the angular displacement (
) can be written as

Answer:
2.25 kg
Explanation:
Length, L = 6 m
tension, T = 600 N
velocity, v = 40 m/s
The formula for the velocity is given by

where, μ is mass per unit length


μ = 0.375
m / L = 0.375
m = 0.375 x 6 = 2.25 kg
Thus, the mass of rope is 2.25 Kg.