Answer:
A. Arginine
Explanation:
The urea cycle is the cycle of the biochemical reactions which produces urea from ammonia.
Steps of the urea cycle:
- Carbamoyl phosphate, in presence of ornithine transcarbamoylase is converted to citrulline by the denotation of carbamoyl phosphate groupto ornithine and a phosphate group is released.
- Amino group of the aspartate and carbonyl group of the citrulline are condensed to form argininosuccinate in the presence of enzyme, argininosuccinate synthetase. This condensation reaction is ATP dependent.
- <u>Argininosuccinate then undergoes cleavage by the argininosuccinase to form intermediate, arginine and fumarate.</u>
- <u>Arginine is then cleaved by the arginase to form urea as well as ornithine.</u> Ornithine is transported back to mitochondria to begin urea cycle again.
Sucrose is a non ionic compound. It does liberates ion when dissolved in water unlike NaCl or other salts which dissolve in water and produce respective cations and anions.
Thus if any amount of sucrose is dissolved in water, it will form non ionic aqueous solution (it will dissolve completely). Thus sucrose solution being non electrolytic will not conduct electricity in aqueous solution.
the bulb will not light up as sucrose will remain in molecular form only
Answer: 100.
Explanation:
1) The subscripts to the right of each element (symbol) in the chemical formula tells the number of atoms of that element present in one unit formula.
2) The unit formula of C₄H₄S₂ is equal to 1 molecule.
3) Therefore, there are 4 carbon atoms, 4 hydrogen atoms and 2 sulfur atoms in each molecule of C₄H₄S₂.
4) Then, you just have to multiply the corresponding subscript of the element times the number of molecules (25 in this case) to find the number of atoms of that kind.
5) These are the calculations for each element in the molecule C₄H₄S₂.
i) C: 4 × 25 = 100
ii) H: 4 × 25 = 100
iii) S: 2 × 25 = 50.
6) The question is about H only, so the answer is that there are 100 hydrogen atoms in 25 molecules of C₄H₄S₂.
To determine the time it takes to completely vaporize the given amount of water, we first determine the total heat that is being absorbed from the process. To do this, we need information on the latent heat of vaporization of water. This heat is being absorbed by the process of phase change without any change in the temperature of the system. For water, it is equal to 40.8 kJ / mol.
Total heat = 40.8 kJ / mol ( 1.50 mol ) = 61.2 kJ of heat is to be absorbed
Given the constant rate of 19.0 J/s supply of energy to the system, we determine the time as follows:
Time = 61.2 kJ ( 1000 J / 1 kJ ) / 19.0 J/s = 3221.05 s
The following causes increase the activity of the electron transport chain:
1. High ADP concentration
2. Large differences in H+ concentration across the inner mitochondrial membrane
3. High phosphate concentration
The following causes decrease the activity of the electron transport chain:
1. Low oxygen concentration
2. Low NADH concentration