answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valina [46]
2 years ago
12

A basketball center holds a basketball straight out, 2.0 m above the floor, and releases it. It bounces off the floor and rises

to a height of 1.5 m. a) What is the ball's velocity just before it hits the floor? b) What is the ball's velocity just after it leaves the floor? c) If the ball is in contact with the floor for 0.02 seconds, what are the magnitude and direction of the ball's average acceleration while in contact with the floor?
Physics
1 answer:
atroni [7]2 years ago
4 0

Answer:

a) The velocity of the ball before it hits the floor is -6.3 m/s

b) The velocity of the ball after it hits the floor is 3.1 m/s

c) The magnitude of the average acceleration is 470 m/s². The direction is upward at an angle of 90º with the ground.

Explanation:

First, let´s calcualte how much time it takes the ball to hit the floor:

The equation for the position of the ball is:

y = y0 + v0 * t + 1/2 g * t²

Where:

y = position at time t

y0 = initial position

v0 = initial velocity

t = time

g = acceleration due to gravity

We take the ground as the origin of the reference system.

a) Since the ball is realesed and not thrown, the initial velocity v0 is 0. The direction of the acceleration is downward, towards the origin, then "g" will be negative. When the ball hits the ground its position will be 0. Then:

0 = 2.0 m + 0 m/s *t - 1/2 * 9.8 m/s²  * t²

-2.0 m = -4.9 m/s²  * t²

t² = -2.0 m / - 4.9 m/s²

t = 0.64 s

The equation for the velocity of a falling object is:

v = v0 + g * t      where "v" is the velocity

since v0= 0:

v = g * t = -9.8 m/s² * 0.64 s = -6.3 m/s

b) Now, we know that the velocity of the ball when it reaches the max height must be 0. We can obtain the time it takes the ball to reach that height from the equation for velocity and then use that time in the equation for position to obtain the initial velocity:

v = v0 + g * t

0 = v0 + g * t

-v0/g = t

now we replace t in the equation for position, since we know that the maximum height is 1.5 m:

y = y0 + v0 * t + 1/2* g * t²           y = 1.5 m       y0 = 0 m   t = -v0/g

1.5 m = v0 * (-v0/g) + 1/2 * g (-v0/g)²

1.5 m = - v0²/g - 1/2 * v0²/g

1.5 m = -3/2 v0²/g

1.5 m * (-2/3) * g = v0²

1.5 m * (-2/3) * (-9.8 m/s²) = v0²

v0 = 3.1 m/s

c) The average acceleration will be:

a = final velocity - initial velocity / time

a = 3.1 m/s - (-6.3 m/s) / 0.02 s = 470 m/s²

the direction of the acceleration is upward perpendicular to the ground.

The vector average acceleration will be:

a = (0, 470 m/s²) or (470 m/s² * cos 90º, 470 m/s² * sin 90º)

You might be interested in
Select the areas that would receive snowfall because of the lake effect.
Studentka2010 [4]

Answer:

- Grand Marais

- Two Harbors

- Duluth

Explanation:

The places that would would get snowfall because of the lake effect are Grand Marais, Two Harbors, and Duluth. The reason for this is that these three places are located right on the shores of the Lake Superior. This lake is one of the biggest lakes in the world. It has enormous amount of water in it, having big impact on the regional climate because of that. The water from this lake creates a lot of humidity in the air, and there's a lot of evaporation as well, both causing the formation of clouds, and when it is cold enough, instead of precipitation, the region gets large amounts of snowfall.

8 0
2 years ago
A tennis player standing 12.6m from the net hits the ball at 3.00 degrees above the horizontal. To clear the net, the ball must
mezya [45]
We actually don't need to know how far he/she is standing from the net, as we know that the ball reaches its maximum height (vertex) at the net. At the vertex, it's vertical velocity is 0, since it has stopped moving up and is about to come back down, and its displacement is 0.33m. So we use v² = u² + 2as (neat trick I discovered just then for typing the squared sign: hold down alt and type 0178 on ur numpad wtih numlock on!!!) ANYWAY....... We apply v² = u² + 2as in the y direction only. Ignore x direction. 
IN Y DIRECTION: v² = u² + 2as 0 = u² - 2gh u = √(2gh) (Sub in values at the very end) 
So that will be the velocity in the y direction only. But we're given the angle at which the ball is hit (3° to the horizontal). So to find the velocity (sum of the velocity in x and y direction on impact) we can use: sin 3° = opposite/hypotenuse = (velocity in y direction only) / (velocity) So rearranging, velocity = (velocity in y direction only) / sin 3° = √(2gh)/sin 3° = (√(2 x 9.8 x 0.33)) / sin 3° = 49 m/s at 3° to the horizontal (2 sig figs)
4 0
2 years ago
Read 2 more answers
If the universe is sufficiently dense, gravity will someday pull it all back together in an event called ________, sort of like
AleksandrR [38]

Answer:

Big Crunch.

Explanation:

Big Crunch is defined as the event which defines the universe's ultimate fate, in this process the universe expansion will reverse which causes the cosmic factor will reach to zero and this is followed by an event which causes the reformation of universe with another Big bang.

The Scenario of the Big Crunch hypothesis that the matter density throughout the universe is extremely high and can be say that it sufficiently dense by which, the attraction through gravity is too large which can overcome the universe's expansion and it can be say that it is the big bang in reverse.

4 0
2 years ago
The mass of the man is 86 kg. What is the force of friction that slowed him down? Use the equation for Newton’s second law, F =
bazaltina [42]

Answer:

  1. Mass = 86 kg acceleration due to gravity = 10m/s

Explanation:

So force =m*a

8 0
2 years ago
Read 2 more answers
Which of the following quantities provide enough information to calculate the tension in a string of mass per unit length μ that
Bad White [126]

Answer:

A. the wave speed v and Wavelength

Explanation:

Given that

Mass density per unit length=μ

Frequency = f

The velocity V given as

\mu=\dfrac{T}{V^2}\ kg/m

V=\sqrt{\dfrac{T}{\mu}}

T=Tension

V=Velocity

V= f λ

λ=Wavelength

Therefore to find the tension ,only wavelength and speed is required.

The answer is A.

8 0
2 years ago
Other questions:
  • A cat falls from a table of height 1.3 m. What is the impact speed of the cat?
    15·1 answer
  • For an object starting from rest and accelerating with constant acceleration, distance traveled is proportional to the square of
    8·1 answer
  • A typical human contains 5.00 l of blood, and it takes 1.00 min for all of it to pass through the heart when the person is resti
    14·2 answers
  • A straight wire 20 cm long, carrying a current of 4 A, is in a uniform magnetic field of 0.6 T. What is the force on the wire wh
    15·2 answers
  • Energy is observed in two basic forms: potential and kinetic. Which of the following correctly matches these forms with a source
    7·1 answer
  • The dielectric strength of rutile is 6.0 × 106 V/m, which corresponds to the maximum electric field that the dielectric can sust
    13·2 answers
  • 150-N box is being pulled horizontally in a wagon accelerating uniformly at 3.00 m/s2. The box does not move relative to the wag
    13·1 answer
  • Tire marks left by a decelerating car were 500. m long. If the car’s acceleration was -8.00 m/s2, what was its initial velocity?
    7·1 answer
  • At a drag race, a jet car travels 1/4 mile in 5.2 seconds. What is the final speed of the
    15·1 answer
  • g A cylinder of mass m is free to slide in a vertical tube. The kinetic friction force between the cylinder and the walls of the
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!