answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Feliz [49]
2 years ago
5

You are exploring a planet and drop a small rock from the edge of a cliff. In coordinates where the +y direction is downward and

neglecting air resistance, the vertical displacement of an object released from rest is given by y − y0 = 1 2 gplanett2, where gplanet is the acceleration due to gravity on the planet. You measure t in seconds for several values of y − y0 in meters and plot your data with t2 on the vertical axis and y − y0 on the horizontal axis. Your data is fit closely by a straight line that has slope 0.400 s2/m. Based on your data, what is the value of gplanet?
Physics
1 answer:
Lelu [443]2 years ago
6 0

Answer:

value of the acceleration of gravity on the planet is 5.00 m/s²

Explanation:

The problem is similar to a free fall exercise, with another gravity value, the expression they give us is the following:

       y-yo = ½ gₐ t²       (1)

They tell us that they make a squared time graph with the variation of the distance, it is appropriate to clarify this in a method to linearize a curve, which is plotted the nonlinear axis to the power that is raised, specifically, the linearization of a curve The square is plotted against the other variable.

  Let's continue our analysis, as we have a linear equation, write the equation of the line.

     

        y1 = m x1 + b       (2)

where  “y1” the dependent variable, “x1” the independent variable, “m” the slope and “b” the short point

In this case as the stone is released its initial velocity is zero which implies that b = 0,

We plot on the “y” axis the time squared “t²” and on the horizontal axis we place “y-yo”.  To better see the relationship we rewrite equation 1 with this form

        t² = 2 /gₐ  (y-yo)

 

With the two expressions written in the same way, let's relate the terms one by one

        y1 = t²

        x1 = (y-yo)

        m = 2/gap

        b= 0

We substitute and calculate

        m = 2/gp

        gₐ = 2/m

        gₐ = 2/ 0.400

        gₐ = 5.00 m / s²

This is the value of the acceleration of gravity on the planet, note that the decimals are to keep the figures significant

You might be interested in
A car travels 30 miles in 1 hour on a winding mountain road. Which of the following is a true statement?
siniylev [52]

Answer:

The true statement is:

"(C) The magnitude of the average velocity is equal to 30 m.p.h."

Explanation:

Given that a car travels 30 miles in 1 hour on a winding mountain road.

Let' check all the statements one by one:

(A) The magnitude of the total displacement is larger than the distance traveled.

Since the entire motion of the car is not exactly given in the question, so it is not possible to tell whether the magnitude of the total displacement is larger than the distance traveled or not.

Thus, this statement is not true.

(B) The magnitude of the average velocity is greater than 30 m.p.h.

The average velocity of an object is defined as the total displacement covered by the particle divided by the total time taken in covering that displacement.

Total distance covered by the car = 30 miles.

Total time taken by the car to cover this distance = 1 hour.

Therefore, the average velocity of the car for this time interval = \rm \dfrac{30\ miles}{1\ hour }= 30\ m.p.h.

Thus, this statement is also not true.

(C) The magnitude of the average velocity is equal to 30 m.p.h.

As is cleared in part (B) section above, the average velocity of the car in the given time interval is 30 m.p.h.

Thus, this statement is true.

(D)The magnitude of the average velocity is less than to 30 m.p.h.

Since. the average velocity of the car is 30 m.p.h.

Thus, this statement is not true.

(E)The car traveled with a constant speed of 30 m.p.h.

The motion of the car on the mountain road is not thoroughly given in the question, so again it is not possible to tell whether the car traveled with a constant speed of 30 m.p.h. or not.

Thus, this statement is also not true.

4 0
2 years ago
Read 2 more answers
A professor's office door is 0.89 m wide, 2.0 m high, and 4.0 cm thick; has a mass of 25 kg ; and pivots on frictionless hinges.
taurus [48]
In order to answer this question ... strange as it may seem ...
we only need one of those measurements that you gave us
that describe the door.

The door is hanging on frictionless hinges, and there's a torque
being applied to it that's trying to close it.  All we need to do is apply
an equal torque in the opposite direction, and the door doesn't move.

Obviously, in order for our force to have the most effect, we want
to hold the door at the outer edge, farthest from the hinges.  That
distance from the hinges is the width of the door ... 0.89 m.

We need to come up with 4.9 N-m of torque,
applied against the mechanical door-closer.

Torque is (force) x (distance from the hinge).

                                    4.9 N-m  =  (force) x (0.89 m) 

Divide each side by 0.89m:    Force = (4.9 N-m) / (0.89 m)

                                                             =  5.506 N .
7 0
2 years ago
How does the sun transfer energy to Earth?
aleksley [76]

Answer:

By electromagnetic waves.

Explanation:

The sun transfers heat to earth via electromagnetic waves  in twomajor  ways:

Radiation- this is the transfer of energy by invisible electromagnetic ways.

Convection-The radiant sun energy warms the atmosphere and becomes heat energy. This transfer of heat through movement of fluids or usually air is called convection.

4 0
2 years ago
Read 2 more answers
A person weighing 0.70 kn rides in an elevator that has an upward acceleration of 1.5 m/s2. what is the magnitude of the normal
creativ13 [48]
First of all, we can find the mass of the person, since we know his weight W:
W=mg=0.70 kN=700 N
And so
m= \frac{W}{g}= \frac{700 N}{9.81 m/s^2}=71.4 kg

We know for Newton's second law that the resultant of the forces acting on the person must be equal to the product between the mass and the acceleration a of the person itself:
\sum F =  ma
There are only two forces acting on the person: his weight W (downward) and the vincular reaction Rv of the floor against the body (upward). So we can rewrite the previous equation as
R_v -W = ma
We know the acceleration of the system, a=1.5 m/s^2 (upward, so with same sign of Rv), so we can solve to find the value of Rv, the normal force exerted by the elevator's floor on the person:
R_v = ma+W=(71.4 kg)(1.5 m/s^2)+700 N =807N
8 0
2 years ago
A 6.0-μF capacitor charged to 50 V and a 4.0-μF capacitor charged to 34 V are connected to each other, with the two positive pla
ch4aika [34]

Answer:

5702.88 J or 5.7mJ

Explanation:

Given that :

C 1 = 6.0-μF

C 2 = 4.0-μF

V 1 = 50V

V 2 = 34V

Note that : Q = CV

Q 1 = C1 * V1

Q 1 = 50×6 = 300μC

Q 2 = 34×4 = 136μC

Parallel connection = C 1 + C 2

= 6+4 = 10μC

V = Qt/C

Where Qt = Q1+Q2

V = Q1+Q2/C

V = 300+136/10

V = 437/10

V = 43.6volts

Uc1 = 1/2×C1V^2

= 1/2 × 6μF × 43.6^2

= 1/2 × 6μF × 1900.96

= 3μF × 1900.96volts

= 5702.88J

= 5702.88J/1000

= 5.7mJ

4 0
2 years ago
Other questions:
  • The number that is used to show the value of one currency compared to another is called the __________. A. trade rate B. currenc
    6·1 answer
  • When carrying extra weight, the space formed between the top of your head and the two axles of the motorcycle is referred to as
    10·1 answer
  • Lindsay is boiling macaroni noodles in a pot of water. The noodles rise and fall as the thermal energy currents move from areas
    14·1 answer
  • The diagram shows the electric field around two charged objects. What is the best conclusion about the charges that can be made
    14·2 answers
  • A square loop of wire surrounds a solenoid. The side of the square is 0.1 m, while the radius of the solenoid is 0.025 m. The sq
    9·2 answers
  • At a processing plant, olive oil of density 875 kg/m3 flows in a horizontal section of hose that constricts from a diameter of 3
    14·1 answer
  • The pH of pure water at 25°C is 7.0. The enthalpy change of the autoionization of water is +55.89 kJ/mol. What is the pH of pure
    9·1 answer
  • A molecular motor moves along a microtubule track in steps of 100 Å displacements. The motor hydrolyzes one molecule of ATP per
    6·1 answer
  • A swimmer standing near the edge of a lake notices a cork bobbing in the water. While watching for one minute, she notices the c
    10·1 answer
  • Kevin is a black high school senior. While walking home from a sporting event at school, he sees a police car and decides to tak
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!