Answer:
formed 4.6 billion years ago
orbit the Sun
range in size from a few feet to more than 500 miles across
most are found in the asteroid belt
Explanation:
Asteroids are rocky bodies orbiting the sun. Asteroids are irregular is shape and size. The size varies from few feet to 500 miles across. Majority of the asteroids lie in asteroid belt which lies between the orbits of Mars and Jupiter. These are though to be remains of unformed planet about 4.6 billion years ago due to high gravitational pull of Jupiter. The largest asteroid is Ceres which is also a dwarf planet. The mass of the entire asteroid belt is just 4% the mass of the moon.
If we assume also that the temperature of the air does not change, we can use Boyle's Law:
p₁V₁ = p₂V₂
Now, we know:
p₁ = 100kPa
V₂ = 100cm³ (the volume of the tyre)
V₁ = 120cm³ (becuse the air is contained inside the tyre AND the pump)
We can solve for p₂:
p₂ = (p₁V₁)/V₂
= (100×120)/100
= 120kPa
Therefore your answer is: 120kPa
Answer:

Explanation:
given data:
wavelength \lambda = 708nm = 708*10^{-9} m
using the following relation:

according to the given information
second and third dark fringe is at same location. so






You first us 1/2(mv^2) to solve for the potential energy and then put that in to PE=m*g*h and solve for hight
Answer:
E = k Q 1 / (x₀-x₂) (x₀-x₁)
Explanation:
The electric field is given by
dE = k dq / r²
In this case as we have a continuous load distribution we can use the concept of linear density
λ= Q / x = dq / dx
dq = λ dx
We substitute in the equation
∫ dE = k ∫ λ dx / x²
We integrate
E = k λ (-1 / x)
We evaluate between the lower limits x = x₀- x₂ and higher x = x₀-x₁
E = k λ (-1 / x₀-x₁ + 1 / x₀-x₂)
E = k λ (x₂ -x₁) / (x₀-x₂) (x₀-x₁)
We replace the density
E = k (Q / (x₂-x₁)) [(x₂-x₁) / (x₀-x₂) (x₀-x₁)]
E = k Q 1 / (x₀-x₂) (x₀-x₁)