answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Afina-wow [57]
2 years ago
4

The UV light that is responsible for tanning the skin falls in the 320-nm to 400-nm region. Calculate the total energy (in joule

s) absorbed by a person exposed to this radiation for 2.5 h, given that there are 2.0 × 1016 photons hitting Earth’s surface per square centimeter per second over a 80-nm (320-nm to 400-nm) range and that the exposed body area is 0.45 m2. Assume that only half of the radiation is absorbed and the other half is reflected by the body. (Hint: Use an average wavelength of 360 nm in calculating the energy of a photon.)
Physics
1 answer:
aivan3 [116]2 years ago
4 0

Answer:

Total Energy 25 j/s

Explanation:

Given Data:

UV light wavelength range 320 nm - 400 nm

Duration of radiation 2.5 h

Exposed area 0.45 m^2 = 4500 cm^2

Number of photons 2.0\times 10^{16}

Average wavelength = \frac{320 + 400}{2} = 360\times 10^{-9} m

Energy per photon =\frac{hc}{average\ wavelenght}

                               = \frac{6.626\times 10^{-34}\times 3\times 10^8}{360\times 10^{-9}}

                               =5.522 \times 10^{-22} J

Total photon hitting the ground  = 2.0\times 10^{16} \times 4500 = 9.9\times 10^{19} photons

Number of photons observed  = \frac{9.9\times 10^{19}}{2} = 4.5 \times 10^{19} photons

Total ENERGY = 4.5 \times 10^{19} \times 5.522 \times 10^{-22} = 25 J/s

You might be interested in
A spring with a spring constant of 2500 n/m. is stretched 4.00 cm. what is the work required to stretch the spring?
Yuri [45]
W = 1/2k*x^2.

k = spring constant = 2500 n/m.
x = distance = 4 cm = 0.04m (convert to same units).

W = 1/2(2500)(0.04)^2 = 2J.
5 0
2 years ago
Read 2 more answers
If you find an igneous rock which has 450 radioactive isotopes and 3,150 stable daughter isotopes, how many half-lifes of this i
slavikrds [6]

Answer:

3t_{1/2}  

Explanation:

To find the half-lifes of the isotope we need to use the following equation:

N_{t} = N_{0}2^{-\frac{t}{t_{1/2}}}     (1)

<em>where Nt: is the amount of the isotope that has not yet decayed after a time t, N₀: is the initial amount of the isotope, t: is the time and </em>t_{1/2}<em>: is the half-lifes.</em>

By solving equation (1) for t we have:

\frac{t}{t_{1/2}} = - \frac{Ln(Nt/N_{0})}{Ln(2)}

<u>Having that:</u>

Nt = 450

N₀ = 3150 + 450 = 3600,

The half-lifes of the isotope is:

t = - \frac{Ln(450/3600)}{Ln(2)} \cdot t_{1/2} = 3t_{1/2}

Therefore, 3 half-lives of the isotope passed since the rock was formed.

I hope it helps you!

3 0
2 years ago
A conducting sphere of radius 5.0 cm carries a net charge of 7.5 µC. What is the surface charge density on the sphere?
11111nata11111 [884]

Answer:

\sigma=0.014\ C/m^2

Explanation:

Given that,

The radius of sphere, r = 5 cm = 0.05 m

Net charge carries, q = 7.5 µC = 7.5 × 10⁻⁶ C

We need to find the surface charge density on the sphere. Net charge per unit area is called the surface charge density. So,

\sigma=\dfrac{7.5\times 10^{-6}}{\dfrac{4}{3}\pi \times (0.05)^3}\\\\=0.014\ C/m^2

So, the surface charge density on the sphere is 0.014\ C/m^2.

7 0
2 years ago
two students are on a balcony 19.6 m above the street. one student throws a ball vertically downward at 14.7 m:ds. at the same i
NARA [144]

A. The difference in the two ball's time in the air is 3 seconds

B. The velocity of each ball as it strikes the ground is 24.5 m/s

C. The balls 0.500 s after they are thrown are 14.7 m apart

<h3>Further explanation</h3>

Acceleration is rate of change of velocity.

\large {\boxed {a = \frac{v - u}{t} } }

\large {\boxed {d = \frac{v + u}{2}~t } }

<em>a = acceleration ( m/s² )</em>

<em>v = final velocity ( m/s )</em>

<em>u = initial velocity ( m/s )</em>

<em>t = time taken ( s )</em>

<em>d = distance ( m )</em>

Let us now tackle the problem!

<u>Given:</u>

Initial Height = H = 19.6 m

Initial Velocity = u = 14.7 m/s

<u>Unknown:</u>

A. Δt = ?

B. v = ?

C. Δh = ?

<u>Solution:</u>

<h2>Question A:</h2><h3>First Ball</h3>

h = H - ut - \frac{1}{2}gt^2

0 = 19.6 - 14.7t - \frac{1}{2}(9.8)t^2

0 = 19.6 - 14.7t - 4.9t^2

4.9t^2 + 14.7t - 19.6 = 0

t^2 + 3t - 4 = 0

(t + 4)(t - 1) = 0

(t - 1) = 0

\boxed {t = 1 ~ second}

<h3>Second Ball</h3>

h = H + ut - \frac{1}{2}gt^2

0 = 19.6 + 14.7t - \frac{1}{2}(9.8)t^2

0 = 19.6 + 14.7t - 4.9t^2

4.9t^2 - 14.7t - 19.6 = 0

t^2 - 3t - 4 = 0

(t - 4)(t + 1) = 0

(t - 4) = 0

\boxed {t = 4 ~ seconds}

The difference in the two ball's time in the air is:

\Delta t = 4 ~ seconds - 1 ~ second

\large {\boxed {\Delta t = 3 ~ seconds} }

<h2>Question B:</h2><h3>First Ball</h3>

v^2 = u^2 - 2gH

v^2 = (-14.7)^2 + 2(-9.8)(-19.6)

v^2 = 600.25

v = \sqrt {600.25}

\boxed {v = 24.5 ~ m/s}

<h3>Second Ball</h3>

v^2 = u^2 - 2gH

v^2 = (14.7)^2 + 2(-9.8)(-19.6)

v^2 = 600.25

v = \sqrt {600.25}

\boxed {v = 24.5 ~ m/s}

The velocity of each ball as it strikes the ground is 24.5 m/s

<h2>Question C:</h2><h3>First Ball</h3>

h = H - ut - \frac{1}{2}gt^2

h = 19.6 - 14.7(0.5) - \frac{1}{2}(9.8)(0.5)^2

\boxed {h = 11.025 ~ m}

<h3>Second Ball</h3>

h = H + ut - \frac{1}{2}gt^2

h = 19.6 + 14.7(0.5) - \frac{1}{2}(9.8)(0.5)^2

\boxed {h = 25.725 ~ m}

The difference in the two ball's height after 0.500 s is:

\Delta h = 25.725 ~ m - 11.025 ~ m

\large {\boxed {\Delta h = 14.7 ~ m} }

<h3>Learn more</h3>
  • Velocity of Runner : brainly.com/question/3813437
  • Kinetic Energy : brainly.com/question/692781
  • Acceleration : brainly.com/question/2283922
  • The Speed of Car : brainly.com/question/568302

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Kinematics

Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle

6 0
2 years ago
Every spring has an equilibrium position. Which statements describe a spring at its equilibrium position? Check all that
alexgriva [62]

Answer:

The elastic potential energy is zero.

The net force acting on the spring is zero.

Explanation:

The equilibrium position of a spring is the position that the spring has when its neither compressed nor stretched - it is also called natural length of the spring.

Let's now analyze the different statements:

The spring constant is zero.  --> false. The spring constant is never zero.

The elastic potential energy is at a maximum  --> false. The elastic potential energy of a spring is given by

E=\frac{1}{2}kx^2

where k is the spring constant and x the displacement. Therefore, the elastic potential energy is maximum when x, the displacement, is maximum.

The elastic potential energy is zero.  --> true. As we saw from the equation above, the elastic potential energy is zero when the displacement is zero (at the equilibrium position).

The displacement of the spring is at a maxi num  --> false, for what we said above

The net force acting on the spring is zero. --> true, as the spring is neither compressed nor stretched

8 0
2 years ago
Read 2 more answers
Other questions:
  • It's a cloudy and rainy day. The air pressure is most likely _____.
    9·1 answer
  • After watching a video about submarines, Jamil wants to learn more about the ocean. which question could be answered through sci
    9·1 answer
  • Which of the following equations illustrates the law of conservation of matter?
    10·1 answer
  • The first-order rearrangement of CH3NC is measured to have a rate constant of 3.61 × 10–15 s–1 at 298 K and a rate constant of 8
    10·1 answer
  • According to Newton's Law of Universal Gravitation, which of the following would cause the attractive force between a planet and
    8·1 answer
  • Suppose you are myopic (nearsighted). You can clearly focus on objects that are as far away as 52.5 cm away. You can clearly foc
    10·1 answer
  • A starship passes Earth at 80% of the speed of light and sends a drone ship forward at half the speed of light rela- tive to its
    10·1 answer
  • An overhead projector lens is 32.0 cm from a slide (the object) and has a focal length of 30.1 cm. What is the magnification of
    5·1 answer
  • A circular wire loop lies inside a region of space containing a magnetic field. The direction of the magnetic field is out of th
    11·1 answer
  • An astronaut hits a golf ball of mass m on the Moon, where there is no atmosphere and the acceleration due to gravity is g 6 , w
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!