First, find percent of oxygen: atom/molecule... there are 2 atoms of Oxygen so: O2/C2H2O2 which is: 32g O2 / 58g C2H2O2 =32/58.
<span>Next, multiply this by the total mass (56g C2H2O2) and the units will cancel out (g*g/g -> g) leaving you with the mass of Oxygen: </span>
<span>56g C2H2O2 * 32g O2/58g C2H2O2 = 56*32/58= 31g</span>
Ionic bond is formed due to the transfer of electrons from one atom to another so that all atoms involved in the bond would become stable (with 8 electrons in the outermost level)
Now, for bromine, it has 35 electrons. This means that bromine has 7 valence electrons in the outermost level. Therefore, bromine needs to gain one electron in order to become stable.
Bromine can react with elements from:
group 1: each element in group 1 needs to lose one electron to become stable. Therefore, one bromine atom can form an ionic bond when combined with an atom of an element from group 1 (element in group 1 loses its electron for bromine atom).
group 2: each element in group 2 needs to lose two electrons to become stable. Therefore, two bromine atoms can form ionic bonds when combined with an atom of an element from group 2 (element in group 2 loses two electrons, one for each bromine atom).
group 3: each element in group 3 needs to lose three electrons to become stable. Therefore, three bromine atoms can form ionic bonds when combined with an atom of an element from group 1 (element in group 3 loses three electrons, one for each bromine atom).
Since no choices are given , I cannot tell the exact choice. But the correct one would be the element from either group 1 , 2 or 3.
Answer:- 6984 kJ of heat is produced.
Solution:- From given information, 1367 kJ of heat is produced by the combustion of 1 mole of ethanol. We are asked to calculate the heat produced by the combustion of 235.0 g of ethanol.
Let's convert given grams to moles and multiply by the heat produced by one mole of ethanol to get the total heat produced. Molar mass of ethanol is 46 grams per mole. The set will be:

= 6984 kJ
So, 6984 kJ of heat is produced by the combustion of 235.0 g of liquid ethanol.
Fractional distillation is a method for separating a liquid from a mixture of two or more liquids. For example, liquid ethanol can be separated from a mixture of ethanol and water by fractional distillation. This method works because the liquids in the mixture have different boiling points.
Answer:
% = 11.11%
Explanation:
To get the %m/m of any solution we should use the following expression:
%m/m = m solute / m solution * 100
we have the mass of solute, but not the mass of solution, however this can be calculated. solution is made using solute and solvent so:
m solution = 25 + 200 = 225 g
Now that we have the mass of solution, we can calculate the %:
%m/m = 25 / 225 * 100
%m/m = 11.11%
This is the %m/m of this solution