answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vekshin1
2 years ago
4

Consider a solenoid of length L, N windings, and radius b (L is much longer than b). A current I is flowing through the wire. If

the radius of the solenoid were doubled (becoming 2b), and all other quantities remained the same, the magnetic field Consider a solenoid of length , windings, and radius ( is much longer than ). A current is flowing through the wire. If the radius of the solenoid were doubled (becoming 2), and all other quantities remained the same, the magnetic field would become one half as strong. would remain the same. would become twice as strong.
Physics
1 answer:
Degger [83]2 years ago
7 0

Answer:

Remain the same.

Explanation:

If we have a solenoid of length L, N windings, with a current I flowing through the wire, the magnetic field inside it will be:

B=\frac{\mu_0NI}{L}

where \mu_0=4\pi \times10^{-7}N/A^2 is the vacuum permeability.

This <u>does not depends on the radius of the solenoid</u>, which means that if the radius of the solenoid were doubled, the magnetic field inside it would remain the same.

You might be interested in
A car travels three-quarters of the way around a circle of radius 20.0 m in a time of 3.0 s at a constant speed. the initial vel
schepotkina [342]
20.3 divided by 3.0 will get u velocity and v times 3.0s 
3 0
2 years ago
Waves that move the particles of the medium parallel to the direction in which the waves are traveling are called
Nikolay [14]

1. a. longitudinal waves.

There are two types of waves:

- Transverse waves: in transverse waves, the oscillations of the wave occur in a direction perpendicular to the direction of propagation of the wave

- Longitudinal waves: in longitudinal waves, the oscillations of the waves occur parallel to the direction in which the waves are travelling.

So, these types of waves are called longitudinal waves.


2. d. a medium

There are two types of waves:

- Electromagnetic waves: these waves are produced by the oscillations of electric and magnetic field, and they can travel both in a medium and also in a vacuum (they do not need a medium to propagate)

- Mechanical waves: these waves are produced by the oscillations of the particles in a medium, so they need a medium to propagate - therefore, the correct choice is d. a medium


3. a. AM/FM radio

Analogue signals consist of continuous signals, which vary in a continuous range of values. On the contrary, digital signals consist of discrete signals, which can assume only some discrete values. For AM and FM radios, signals are transmitted by using analogue signals.

5 0
2 years ago
A flute player hears four beats per second when she compares her note to an 880 Hz tuning fork (note A). She can match the frequ
ludmilkaskok [199]

Answer:

884Hz

Explanation:

Beats is the absolute difference between two frequencies therefore

Beats = f1-f2

4=f1-880

F1=880+4

F1=884Hz

7 0
2 years ago
A point charge Q is held at a distance r from the center of a dipole that consists of two charges ±qseparated by a distance s. T
atroni [7]

Answer:

The magnitude of the force on the dipole due to the charge Q = \rm \dfrac{1}{\epsilon_o}\times \dfrac{1}{4\pi }\dfrac{2qQs}{r^3}.

The magnitude of the torque on the dipole = \rm \dfrac{1}{\epsilon_o}\times \dfrac{1}{4\pi}\dfrac{2qQs^2}{r^3}.

Explanation:

Given that a point charge Q is held at a distance r from the center of a dipole that consists of two charges ±q, separated by a distance s and the charge Q is located in the plane that bisects the dipole.

The magnitude of the electric field that the dipole exerts at the position where the charge Q is held is given by

\rm E = \dfrac{k2qs}{(r^2+s^2)^{3/2}}.

<em>where</em>,

k is the Coulomb's constant, having value = \dfrac{1}{4\pi \epsilon_o}

\epsilon_o is the electrical permittivity of free space.

Also, r>>s, therefore, \rm r^2+s^2\approx r^2.

\rm E = \dfrac{k2qs}{(r^2)^{3/2}}=\dfrac{k2qs}{r^3}.

The magnitude of the electric force F on a charge q placed at a point and the magnitude of the electric field E at that point are related as

\rm F=qE

Therefore, the electric force on the charge Q due to the dipole is given by

\rm F=Q\dfrac{k2qs}{r^3}=\dfrac{1}{4\pi \epsilon_o}\dfrac{2qQs}{r^3}.

According to Newton's third law of motion, the magnitude of the force exerted by the dipole on the charge Q is same as the magnitude of the force exerted by the charge on the dipole.

Thus, the magnitude of the force on the dipole due to the charge Q = \dfrac{1}{\epsilon_o}\times \dfrac{1}{4\pi }\dfrac{2qQs}{r^3}.

The magnitude of the torque on the dipole is given by

\rm \tau = Fs\ \sin\theta

Since the charge Q is placed in the plane that bisects the dipole, therefore, \theta = 90^\circ.

\rm \tau = \dfrac{1}{4\pi \epsilon_o}\dfrac{2qQs}{r^3}\cdot s\cdot 1=\dfrac{1}{4\pi \epsilon_o}\dfrac{2qQs^2}{r^3}.

4 0
2 years ago
A harmonic wave travels in the positive x direction at 6 m/s along a taught string. A fixed point on the string oscillates as a
Lapatulllka [165]

Answer:

Amplitude, A = 0.049 meters

Explanation:

Given that,

A harmonic wave travels in the positive x direction at 6 m/s along a taught string. A fixed point on the string oscillates as a function of time according to the equation :

y = 0.049 \cos(7t) .......(1)

The general equation of a wave is given by :

y=A\cos(\omega t) .......(2)

A is amplitude of wave

On comparing equation (1) and (2) we get :

A = 0.049 meters

So, the amplitude of the wave is 0.049 meters.

3 0
2 years ago
Other questions:
  • Which object has the greatest inertia?
    13·2 answers
  • In a harbor, you can see sea waves traveling around the edges of small stationary boats. Why does this happen?
    7·1 answer
  • Find the centripetal force needed by a 1275 kg car to make a turn of radius 40.0 m at a speed of 25.0 km/h
    12·2 answers
  • A conducting rod (length = 80 cm) rotates at a constant angular rate of 15 revolutions per second about a pivot at one end. A un
    10·1 answer
  • Kathmandu lies at high altitude than biratnagar from sea level.Where does an object has more weight between two places?Give reas
    6·1 answer
  • What is the gravitational force of attraction between a planet and a 17-kilogram mass that is falling freely toward the surface
    13·1 answer
  • A hockey puck of mass m1=165 g slides from left to right with an initial velocity of 15.5 m/s. It collides head on with a second
    14·1 answer
  • A solenoid 10.0 cm in diameter and 75.0 cm long is made from copper wire of diameter 0.100 cm, with very thin insulation. The wi
    6·2 answers
  • Three magnets are placed on a plastic stick as shown in the image. Explain how the magnets need to be rearranged so that they st
    15·2 answers
  • Under which one of the following circumstances will heat transfer occur via convection? Group of answer choices Convection occur
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!