The first law of thermodynamics says that the variation of internal energy of a system is given by:

where Q is the heat delivered by the system, while W is the work done on the system.
We must be careful with the signs here. The sign convention generally used is:
Q positive = Q absorbed by the system
Q negative = Q delivered by the system
W positive = W done on the system
W negative = W done by the system
So, in our problem, the heat is negative because it is releaed by the system:
Q=-1275 J
while the work is positive because it is performed by the surrounding on the system:
W=+855 J
So, the variation of internal energy of the system is
Answer:
Part a)

Part b)

Explanation:
Part a)
change in the energy due to decay of photon is given as

here we know that

now we have



Part b)
While electron return to its ground state it will emit a photon of energy 2/3rd of the total energy
so we have


now to find the wavelength we have



Complete Question
The complete question is shown on the first uploaded image
Answer:
The correct answer is option c
Explanation:
Faraday states that when there is a change in magnetic field of a coil of a wire, it means that there exist an emf in the circuit which in induced due to the change in the magnetic flux
From the question two separate but nearby coils are mounted along the axis. First coil is connected to the power supply and the current flow is controlled by the supply.When the current alternates, it would produce magnetic field ,also the second coil is connected to an ammeter which indicates the current that is flowing in it when current in the first coil changes
This magnetic field that is produce would cause a change flux which would induce current in the second coil so the ammeter would indicate current flow in the second coil
a is incorrect because the current in fir coil is not change hence flux won't change therefore current is is not induced in second coil
This is the same reason b is incorrect
d is incorrect due to the fact that when the second coil is connected to a power supply by rewiring it to be in series with first coil the law of electromagnetism would no longer hold so he ammeter would show no reading
1) The kinetic energy of an object is given by:

where m is the object's mass and v its speed.
By using this equation, we find the initial kinetic energy of the skateboarder:

and the final kinetic energy as well:

So, her change in kinetic energy is

2) The work-energy theorem states that the work done to increase the speed of an object is equal to the variation of kinetic energy of the object:

Therefore, the work done by the skateboarder is
Answer: Car brakes produces more energy then the bicycle because the cars wheels produces a much bigger force that makes the car go and to stop that force the car uses greater amount of energy that transfers to heat but in a bicycle the wheels do not turn that fast so when you press the break there is less energy that transfer to heat.
Explanation: