On comparing values , we see that student which has the largest percent error is <u>A. Student 4: 9.61 m/s2
.</u>
<u>Explanation:</u>
Here, we have Four students measured the acceleration of gravity. The accepted value for their location is 9.78m/s2. Let's calculate which student’s measurement has the largest percent error :
<u>A. Student 4: 9.61 m/s2
</u>
Percentage of error =
%.
<u>B. Student 3: 9.88 m/s2
</u>
Percentage of error =
%.
<u>C. Student 2: 9.79 m/s2
</u>
Percentage of error =
% .
<u>D. Student 1: 9.78 m/s2</u>
Percentage of error =
% .
On comparing values , we see that student which has the largest percent error is <u>A. Student 4: 9.61 m/s2
.</u>
There are no choices on the list you provided that make such a statement,
and it's difficult to understand what is meant by "the following".
That statement is one way to describe the approach to 'forces of gravity'
taken by the theory of Relativity.
Answer:

Explanation:
Assuming uniform spread of sound with no significant reflections or absorption. We know that sound intensity varies
where r is the distance
Since intensity is given then when at 3 m


Since we have the constant then at 4m
Intensity, 
Answer:
Fp = 26.59[N]
Explanation:
This problem can be solved using the principle of work and energy conservation, i.e. the final kinetic energy of a body will be equal to the sum of the forces that do work on the body plus the initial kinetic energy.
We need to identify the initial data:
d = distance = 41.9[m]
Ff = friction force = 44.5 [N]
m = mass = 16.3 [kg]
v1 = 1.9 [m/s]
v2 = 12.6 [m/s]
The kinetic energy at the beginning can be calculated as follows:
![E_{k1}= \frac{1}{2}*m*v_{1}^2 \\E_{k1}= \frac{1}{2}*16.3*(1.9)_{1}^2\\E_{k1}= 29.42[J]](https://tex.z-dn.net/?f=E_%7Bk1%7D%3D%20%5Cfrac%7B1%7D%7B2%7D%2Am%2Av_%7B1%7D%5E2%20%5C%5CE_%7Bk1%7D%3D%20%5Cfrac%7B1%7D%7B2%7D%2A16.3%2A%281.9%29_%7B1%7D%5E2%5C%5CE_%7Bk1%7D%3D%2029.42%5BJ%5D)
And the final kinetic energy.
![E_{k2}= \frac{1}{2}*m*v_{2}^2 \\E_{k2}= \frac{1}{2}*16.3*(12.6)^2\\E_{k2}= 1294[J]](https://tex.z-dn.net/?f=E_%7Bk2%7D%3D%20%5Cfrac%7B1%7D%7B2%7D%2Am%2Av_%7B2%7D%5E2%20%5C%5CE_%7Bk2%7D%3D%20%5Cfrac%7B1%7D%7B2%7D%2A16.3%2A%2812.6%29%5E2%5C%5CE_%7Bk2%7D%3D%201294%5BJ%5D)
The work is performed by two forces, the friction force and the pushing force, it is important to clarify that these forces are opposite in direction.
The weight of the cart also performs a work in the direction of movement since the plane is tilted down, this component of the weight of the cart must be parallel to the surface of the inclined plane.
![W_{1-2}=-(44.5*41.9)+(16.3*9.81*sin(17.5)*41.9)+(F_{p}*41.9) \\therefore:\\E_{k1}+W_{1-2}=E_{k2}\\29.42+150.16+(F_{p}*41.9)=1294\\F_{p}=1114.42/41.9\\F_{p}=26.59[N]](https://tex.z-dn.net/?f=W_%7B1-2%7D%3D-%2844.5%2A41.9%29%2B%2816.3%2A9.81%2Asin%2817.5%29%2A41.9%29%2B%28F_%7Bp%7D%2A41.9%29%20%5C%5Ctherefore%3A%5C%5CE_%7Bk1%7D%2BW_%7B1-2%7D%3DE_%7Bk2%7D%5C%5C29.42%2B150.16%2B%28F_%7Bp%7D%2A41.9%29%3D1294%5C%5CF_%7Bp%7D%3D1114.42%2F41.9%5C%5CF_%7Bp%7D%3D26.59%5BN%5D)
Answer:
8.02×10⁵ m
Explanation:
Equation for centripetal force:
F = mv²/r
Solving for r:
r = mv²/F
Given:
F = 8955 N
m = 1160 kg
v = 7446 m/s
r = (1160 kg) (7446 m/s)² / 8955 N
r = 7.182×10⁶ m
The height above the surface is:
h = 7.182×10⁶ m − 6.38×10⁶ m
h = 0.802×10⁶ m
h = 8.02×10⁵ m