Answer:
Mass = 6.183 g
Solution:
Step 1: Calculate number of moles of Boric acid using following formula,
Molarity = Moles ÷ Volume
Solving for Moles,
Moles = Molarity × Volume
Putting Values,
Moles = 0.05 mol.L⁻¹ × 2.0 L
Moles = 0.1 mol
Step 2: Calculate Mass of Boric Acid using following formula,
Moles = Mass ÷ M.mass
Solving for Mass,
Mass = Moles × M.mass
Putting values,
Mass = 0.1 mol × 61.83 g.mol⁻¹
Mass = 6.183 g
Flask used to prepare this solution is called as Volumetric flask. Take 2 L volumetric flask, add 6.183 g of Boric acid and fill it to the mark with distilled water.
Answer:
Atoms are made of protons, neutrons and electrons.
Explanation:
The Dalton's atomic theory was an early attempt at describing the properties of atoms. It stipulated that atoms were the smallest indivisible particle of a substance. Chemical reactions occur as a result of a combination or separation of atoms. Atoms of the same element are exactly alike and differ from atoms of other elements. Atoms can neither be created nor destroyed.
As time went on, modern scientific evidence began to modify the original postulates of the Dalton's atomic theory. It was not postulated in 1805 that atoms were composed of subatomic particles; electrons, neutrons and protons. Dalton's theory held the atom to be 'indivisible'. However in 1897, JJ Thompson discovered the electron. Subsequently, the proton and neutrons were discovered. This shows that the atom in itself consisted of even smaller particles.
Answer:
The correct options are A, and C.
Explanation:
Osmosis: It is defined as the movement of solvent with the help of selectively semipermeable membrane into a region of where high solute concentration is present to equalize the concentration of solute on the both compartments.
Reverse osmosis: It is defined as the movement of the high concentration solvent is forced onto the lighter concentration side with the help of mechanical pressure.
It can be made true by changing "cannot" to "can".
Answer:
110ml
Explanation:
<em>Using the dilution equation, C1V1 = C2V2</em>
<em>Where C1 is the initial concentration of solution</em>
<em>C2 is final concentration of solution</em>
<em>V1 is intital volume of solution</em>
<em>V2 is final volume of solution.</em>
From the question , C1=6M, C2=0.5M, V1=10ml, V2=?



volume of water added = final volume -initial volume
= 120-10
=110ml