Assume the wooden piece prevents the balloon from rising, is not so heavy as to cause the balloon to descend. and the 15 m/s is horizontal velocity “riding the wind,” That horizontal velocity does not affect the time the wood will take to reach the ground after release. Initial vertical velocity is zero.
s = u t + 1/2 g t^2
s is the height above ground, 300 m.
u is initial vertical velocity, zero.
t is time to reach the ground.
g is acceleration of gravity near Earth, 9.8 m/s^2.
300 m = 0 t + 1/2 (9.8 m/s^2) t^2
300 m = (4.9 m/s^2) t^2
61.22 s^2 = t^2
7.82 seconds = t
Answer:
468449163762.0812 W
Explanation:
m = Mass = 
V = Volume =
r = Distance of sphere from isotropic point source of light = 0.5 m
R = Radius of sphere = 2 mm
= Density = 19 g/cm³
c = Speed of light = 
A = Area = 
I = Intensity = 
g = Acceleration due to gravity = 9.81 m/s²
Force due to radiation is given by

According to the question

The power required of the light source is 468449163762.0812 W
The answer is B. I don’t think I need to explain this,
Mean is average, Mode is the most common number, and Median is the middle number when you put the numbers is numerical order from least to greatest
Answer:
Incomplete question
This is the complete question
For a magnetic field strength of 2 T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical nerve that has a diameter of 1.5 mm. Assume that the entire nerve carries a current due to an applied voltage of 100 mV (that of a typical action potential). The resistivity of the nerve is 0.6ohms meter
Explanation:
Given the magnetic field
B=2T
Lenght of rod is 1mm
L=1/1000=0.001m
Diameter of rod=1.5mm
d=1.5/1000=0.0015m
Radius is given as
r=d/2=0.0015/2
r=0.00075m
Area of the circle is πr²
A=π×0.00075²
A=1.77×10^-6m²
Given that the voltage applied is 100mV
V=0.1V
Given that resistive is 0.6 Ωm
We can calculate the resistance of the cylinder by using
R= ρl/A
R=0.6×0.001/1.77×10^-6
R=339.4Ω
Then the current can be calculated, using ohms law
V=iR
i=V/R
i=0.1/339.4
i=2.95×10^-4 A
i=29.5 mA
The force in a magnetic field of a wire is given as
B=μoI/2πR
Where
μo is a constant and its value is
μo=4π×10^-7 Tm/A
Then,
B=4π×10^-7×2.95×10^-4/(2π×0.00075)
B=8.43×10^-8 T
Then, the force is given as
F=iLB
Since B=2T
F=iL(2B)
F=2.95×10^-4×2×8.34×10^-8
F=4.97×10^-11N
In elastic
collision, both the kinetic energy and momentum are conserved. Conservation
means that both the kinetic energy and momentum will have the same values
before and after elastic collision.
<span>As the
object A has low mass than object B. Hence upon collision, object B moves
forward, while object A will move backward. So option "C" is correct. </span>