The correct option is B.
Coal dust refers to the powered form of coal. Because of the high surface area of coal dust it is highly prone to dust explosion, which involves rapid combustion of fine particles that are suspended in the air; this usually occur in an enclosed place. Coal dust in an enclosed place is more explosive than coal dust that is blown outdoor in an open space because the coal dust in an enclosed place is more concentrated due to restricted space, thus it is more liable to explosion.
<span>(19.55 mol Au) / ( 1 ) x (196.97 g Au) / ( 1 mol Au) =
19.55 x 196.97 =
3850.76 g Au
I hope this helps you and have a great day!! :)
</span>
Answer:
334J/g
Explanation:
Data obtained from the question include:
Mass (m) = 1g
Specific heat of Fusion (Hf) = 334 J/g
Heat (Q) =?
Using the equation Q = m·Hf, we can obtain the heat released as follow:
Q = m·Hf
Q = 1 x 334
Q = 334J
Therefore, the amount of heat released is 334J
At 15.2°C. Kinetic energy of molecules highly depends on the temperature — the warmer it is, the faster the molecules will move, especially in fluids (gases and liquids). If we consider that the formula for average kinetic energy of molecules is:
Ek = 3/2*k*T where k is Boltzmanns constant and 3/2 is, well, 3/2, kinetic energy of molecules really only depends on the temperature.
Answer: one simple distillation column is required to separate the stream into five pure products. With four different flat bottom flask, for collection of the distilled products
Explanation: simple distillation works with the difference in boiling points of the liquid to be separated. For the separation of five different constituent to be possible, we have to know the boiling points of the constituents.
For your understanding, let's define constituents in the liquid to be A, B, C, D, E. And the boiling points increases respectively. Start by heating the liquid to the boiling point of A to extract A. After a while check if the constituents A is still dropping in the flat bottom flask, if it has stopped dropping, it simply means that we have extracted all A constituents in the liquid, label the Flask A. Get another flask to extract constituent B.
Heat the mixture to the boiling point of B, after a while check if constituent B is still dropping in the flat bottom flask, if it has stopped dropping,it means that we have extracted all B constituent in the liquid, label the Flask B. Get another flask for C.
Repeat the same process for C and D.
After Extracting D we don't need to distillate E because we already have a pure form of E inside to the conical flask.
SEE PICTURE TO UNDERSTAND WHAT A SIMPLE DISTILLATION LOOKS LIKE