Answer is: A. Chemical energy to electromagnetic energy and thermal energy.
Balanced chemical reaction: 2Mg(s) + O₂(g) → 2MgO(s) + energy.
This is chemical change (chemical reaction), because new substance (magnesium oxide MgO) is formed, the atoms are rearranged and the reaction is followed by an energy change (exothermic reaction because energy is released).
Chemical changes (chemical synthesis) is when a substance combines with another (in this example magnesium and oxygen) to form a new substance.
Answer : Total molecules that will be needed to visualize a single egg will be 78500 molecules of dye.
Explanation : As a single egg cell has an approximately diameter of 100 μm.
We can use this formula to calculate area of the cell membrane;
A = π
;
We can take π as 3.14 and we get;
A = 3.14 X
Soving we get;
A = 7850 μ
Here we have to calculate the amount of dye molecules which will be needed for 10 fluorescent molecules / μ
but;
here 1 μ
= 7850 μ
dye molecules.
Therefore, 10 fluorescent molecules will need;
7850 X 10 = 78500 molecules of dye.
Therefore, the answer is 78500 molecules of dye.
25 g of NH₃ will produce 47.8 g of (NH₄)₂S
<u>Explanation:</u>
2 NH₃ + H₂S ----> (NH₄)₂S
Molecular weight of NH₃ = 17 g/mol
Molecular weight of (NH₄)₂S = 68 g/mol
According to the balanced reaction:
2 X 17 g of NH₃ produces 68 g of (NH₄)₂S
1 g of NH₃ will produce
g of (NH₄)₂S
25g of NH₃ will produce
of (NH₄)₂S
= 47.8 g of (NH₄)₂S
Therefore, 25 g of NH₃ will produce 47.8 g of (NH₄)₂S
<span>2 KClO3(s) → 3 O2(g) + 2 KCl(s)
</span><span>Note: MnO2 (Manganese Dioxide) is not part of the reaction. A catalyst lowers the activation energy and increases both forward and reverse reactions at equal rates.
</span>
molar mass of KClO3 = 122.5
Moles of KClO3 = 3.45 / 122.55 = 0.028
Moles of O2 produce =

= 0.042 moles
molar mass of O2 = 32
so, mass of O2 = 32 x 0.042 = 1.35 g
The graph is not given in the question, so, the required graph is attached below:
Answer:
According to the graph, the relationship between the density of the sugar solution and the concentration of the sugar solution is directly proportional to each other as they both are increasing exponentially.
The graph shows that, the density of sugar solution will increase with the increase in concentration of sugar in the solution.