Answer:
Explanation:
4μC will attract -9μC towards the centre and -5μC will repel it away from the centre. Both these forces are opposite to each other.
Force due to 4μC on -9μC towards the centre
= k x Q₁ Q₂/R² = 9 X 10⁹ X 4 X 10⁻⁶ X 9 X 10⁻⁶ / (1.2)² = 225 X 10⁻³ N/C
Force due to -5μC on -9μC away from the centre
= 9 x 10⁹ x 5 x 10⁻⁶x 9 x 10⁻⁶/( 0.8)² = 632.8 x 10⁻³ .N/C
Ner field =407.8 N/C.
Answer:
The pressure at this point is 0.875 mPa
Explanation:
Given that,
Flow energy = 124 L/min
Boundary to system P= 108.5 kJ/min

We need to calculate the pressure at this point
Using formula of pressure


Here, 
Where, v = velocity
Put the value into the formula




Hence, The pressure at this point is 0.875 mPa
Your basically breaking the sound beerier <span />
Where are the following sketches?
Answer:
Impulse = 90
Resulting Velocity = 89
Explanation:
Use F * change in time = m * change in velocity.
For the first part of the question, the left side of the equation is the impulse. Plug it in.
60 * (3.0 - 0) = 90.
For the second half. we use all parts of the equation. I'm gonna use vf for the final velocity.
60 * (3.0 - 0) = 10 * (vf - 80). Simplify.
90 = 10vf - 800. Simplify again.
890 = 10vf. Divide to simplify and get the answer.
The resulting velocity is 89.