answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergey [27]
2 years ago
7

Two firefighters are fighting a fire with identical water hoses and nozzles, except that one is holding the hose straight so tha

t the water leaves the nozzle in the same direction it comes, while the other holds it backward so that the water makes a U-turn before being discharged. Which firefighter will experience a greater reaction force?
Physics
1 answer:
kicyunya [14]2 years ago
4 0

Answer:

The one that holds it backward will experience a greater reaction force.

Explanation:

Newtons third law of motion states that in every action there is equal and opposite reaction. The action force of making the water  leave the nozzle for the firefighter who holds the hose backwards is greater than that for the fire fighter holding it straight. The water requires a a greater momentum and force to make a u-turn before leaving the nozzle. Hence the reaction force for the hose held backwards is greater

You might be interested in
Norma kicks a soccer ball with an initial velocity of 10.0 meters per second at an angle of 30.0°. If the ball moves through the
enyata [817]

<u>Answer</u>

27.7


<u>Explanation</u>

The ball was hit at an angle of 30°, with the horizontal at a speed of 10 m/s. We have to find the horizontal component of speed.

cosx = adjacent/hypotenuse

cos 30 = adjacent / 10

adjacent = 10 cos30

             = 8.66 m/s        ⇒ This is the horizontal speed.

Now  find the horizontal distance.

Distance = speed × time

               = 8.66 × 3.2

                = 27.71

Answer to the nearest tenth = 27.7

4 0
2 years ago
Read 2 more answers
A hummingbird can a flutter its wings 4800 times per minute what is the frequency of wing flutters per second
Scilla [17]

the answer i got is 80 i hope this helpss!!!!

7 0
2 years ago
Read 2 more answers
A uniform cylindrical steel wire (density: 7.8 x 103 kg/m3), 58.0 cm long and 1.34 mm in diameter, is fixed at both ends. To wha
lbvjy [14]

Answer:

T= 354.65 N

Explanation:

Given that

ρ= 7800 kg/m³

L= 58 cm

d=1.34 mm

f= 311 Hz

T= Tension

Speed of wave ,V

V = f λ      

V = f L

V= 311 x 0.58 m/s

V=180.38 m/s

Area of cross sectional

A= πr² mm²

A= 3.14 x 0.67² mm²

A=1.41 mm²

Mass = Density x Volume

m=7800\times 1.41\times 10^{-6}\ kg/m

m=0.0109 kg/m

Tension ,T

T=m V^2

T= 0.0109 x 180.38² N

T= 354.65 N

     

3 0
2 years ago
A truck with a heavy load has a total mass of 7100 kg. It is climbing a 15∘ incline at a steady 15 m/s when, unfortunately, the
Andrej [43]

Answer:

The load has a mass of 2636.8 kg

Explanation:

Step 1 : Data given

Mass of the truck = 7100 kg

Angle = 15°

velocity = 15m/s

Acceleration = 1.5 m/s²

Mass of truck = m1 kg

Mass of load = m2 kg

Thrust from engine = T

Step 2:

⇒ Before the load falls off, thrust (T) balances the component of total weight downhill:

T = (m1+m2)*g*sinθ

⇒ After the load falls off, thrust (T) remains the same but downhill component of weight becomes  m1*gsinθ .

Resultant force on truck is F = T – m1*gsinθ  

F causes the acceleration of the truck: F= m*a

This gives the equation:

T – m1*gsinθ = m1*a  

T = m1(a + gsinθ)

Combining both equations gives:

(m1+m2)*g*sinθ = m1*(a + gsinθ)

m1*g*sinθ + m2*g*sinθ =m1*a + m1*g*sinθ

m2*g*sinθ = m1*a

Since m1+m2 = 7100kg, m1= 7100 – m2. This we can plug into the previous equation:

m2*g*sinθ = (7100 – m2)*a

m2*g*sinθ = 7100a – m2a

m2*gsinθ + m2*a = 7100a

m2* (gsinθ + a) = 7100a

m2 = 7100a/(gsinθ  + a)

m2 = (7100 * 1.5) / (9.8sin(15°) + 1.5)

m2 = 2636.8 kg

The load has a mass of 2636.8 kg

6 0
2 years ago
A car initially traveling at 24 m/s slams on the brakes and moves forward 196 m before coming to a complete halt. What was the m
Marrrta [24]

Answer:

-1.47 m/s^2

Explanation:

We can use the following SUVAT equation to solve the problem:

v^2 - u^2 = 2ad

where

v = 0 is the final velocity of the car

u = 24 m/s is the initial velocity

a is the acceleration

d = 196 m is the displacement of the car before coming to a stop

Solving the equation for a, we find the acceleration:

a=\frac{v^2-u^2}{2d}=\frac{0-(24)^2}{2(196)}=-1.47 m/s^2

4 0
2 years ago
Other questions:
  • a field hockey ball is launched from the ground at an angle to the horizontal. what are the ball's horizontal and vertical accel
    11·1 answer
  • The wavelength of some red light is 700.5 nm. what is the frequency of this red light?
    15·1 answer
  • For an object starting from rest and accelerating with constant acceleration, distance traveled is proportional to the square of
    8·1 answer
  • What is the acceleration of a ball rolling down a ramp that starts from rest and travels 0.9 m in 3 s?
    15·1 answer
  • Which magnetic property best describes a magnet’s ability to act at a distance? Magnets are dipolar. Magnets attract only certai
    14·2 answers
  • A 0.180-kilogram cart traveling at 0.80 meter per second to the right collides with a 0.100-kilogram cart initially at rest. The
    13·1 answer
  • Which one of the following devices converts radioactive emissions to light for detection?
    8·1 answer
  • A hockey goalie is standing on ice. Another player fires a puck (m = 0.170 kg) at the goalie with a velocity of +44.6 m/s. (a) I
    7·1 answer
  • Which statement correctly describes how a bar magnet should be placed on a globe to correctly align with Earth's magnetic field?
    11·2 answers
  • the container is filled with liquid. the depth of liquid is 60 cm. if it is exerting the pressure of 2000pa. calculate the densi
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!