answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wlad13 [49]
2 years ago
3

A moving ball with a momentum of 25 kg m / s collides head-on with a wall.

Physics
2 answers:
Harman [31]2 years ago
4 0

Answer: D. 1000N

Explanation:

p1 = 25 kgm/s, p2 = -25 kgm/s, t = 50 ms = 50 * 10^(-3) s = 0.05 s

change in momentum = initial momentum – final momentum

Mathematically represented as:

Δp = p1 - p2 = 25 - (-25) = 50 kgm/s

Δp = 50 kgm/s

change in momentum = Force * time interval

Mathematically represented thus:

Δp = F * Δt

Making F the subject of the equation, we have

F = Δp/Δt

F = 50/0.05

F = 1000 N

Yanka [14]2 years ago
3 0

Answer:

d 1000N

Explanation:

change in momentum = 25 -(-25) = 50

by impuls momentum theorm

F.Δt = p2 - p1

f = p2 - p1 / Δt

f = 50/50*10^-3

so f = 1000N

You might be interested in
An astronaut weighs 8.00 × 102 newtons on the sur- face of Earth. What is the weight of the astronaut 6.37 × 106 meters above th
kolbaska11 [484]

Answer:

mg=200.4 N.

Explanation:

This problem can be solved using Newton's law of universal gravitation: F=G\frac{m_{1}m_{2}}{r^{2}},

where F is the gravitational force between two masses m_{1} and m_{2}, r is the distance between the masses (their center of mass), and G=6.674*10^{-11}(m^{3}kg^{-1}s^{-2}) is the gravitational constant.

We know the weight of the astronout on the surface, with this we can find his mass. Letting w_{s} be the weight on the surface:

w_{s}=mg,

mg=8*10^{2},

m=(8*10^{2})/g,

since we now that g=9.8m/s^{2} we get that the mass is

m=81.6kg.

Now we can use Newton's law of universal gravitation

F=G\frac{Mm}{r^{2}},  

where m is the mass of the astronaut and M is the mass of the earth. From Newton's second law we know that

F=ma,

in this case the acceleration is the gravity so

F=mg, (<u>becarefull, gravity at this point is no longer</u> 9.8m/s^{2} <u>because we are not in the surface anymore</u>)

and this get us to

mg=G\frac{Mm}{r^{2}}, where mg is his new weight.

We need to remember that the mass of the earth is M=5.972*10^{24}kg and its radius is 6.37*10^{6}m.

The total distance between the astronaut and the earth is

r=(6.37*10^{6}+6.37*10^{6})=2(6.37*10^{6})=12.74*10^{6} meters.

Now we can compute his weigh:

mg=G\frac{Mm}{r^{2}},

mg=(6.674*10^{-11})\frac{(5.972*10^{24})(81.6)}{(12.74*10^{6})^{2}},

mg=200.4 N.

5 0
2 years ago
Apply the impulse-momentum relation and the work-energy theorem to calculate the maximum value of t if the cake is not to end up
loris [4]
Puto chupame el semen ok? right?
8 0
2 years ago
A 25cm×25cm horizontal metal electrode is uniformly charged to +50 nC . What is the electric field strength 2.0 mm above the cen
saw5 [17]

Answer:

The electric field strength is 4.5\times 10^{4} N/C

Solution:

As per the question:

Area of the electrode, A_{e} = 25\times 25\times 10^{- 4} m^{2} = 0.0625 m^{2}

Charge, q = 50 nC = 50\times 10^{- 9} C[/etx]Distance, x = 2 mm = [tex]2\times 10^{- 3} m

Now,

To calculate the electric field strength, we first calculate the surface charge density which is given by:

\sigma = \frac{q}{A_{e}} = \frac{50\times 10^{- 9}}{0.0625} = 8\times 10^{- 7}C/m^{2}

Now, the electric field strength of the electrode is:

\vec{E} = \frac{\sigma}{2\epsilon_{o}}

where

\epsilon_{o} = 8.85\times 10^{- 12} F/m

\vec{E} = \frac{8\times 10^{- 7}}{2\times 8.85\times 10^{- 12}}

\vec{E} = 4.5\times 10^{4} N/C

7 0
2 years ago
You are driving at the speed of 27.7 m/s (61.9764 mph) when suddenly the car in front of you (previously traveling at the same s
Greeley [361]

there is no questions associated with this what are the questions that go with this senario


8 0
2 years ago
Read 2 more answers
A diver shines light up to the surface of a flat glass-bottomed boat at an angle of 30° relative to the normal. If the index of
son4ous [18]

Answer:

<h2>35</h2>

Explanation:

According to snell's law which states that the ratio of the sin of incidence (i) to the angle of refraction(n) is a constant for a given pair of media.

sini/sinr = n

n is the constant = refractive index

Since the diver shines light up to the surface of a flat glass-bottomed boat, the refractive index n = nw/ng

nw is the refractive index of water and ng is that of glass

sini/sinr = nw/ng

given i = 30°, nw = 1.33, ng = 1.5, r = angle the light leave the glass

On substitution;

sin 30/sinr = 1.33/1.5

1.5sin30 = 1.33sinr

sinr = 1.5sin30/1.33

sinr = 0.75/1.33

sinr = 0.5639

r = arcsin0.5639

r ≈35°

angle the light leave the glass is 35°

7 0
2 years ago
Other questions:
  • A glider moving with a speed of 200 kilometers/hour experiences a cross wind of 30 kilometers/hour. What is the resultant speed
    5·1 answer
  • Assuming the same current is running through two separate coils, why is it easier to thrust a magnet into a wire coil with one l
    6·2 answers
  • A visitor to the observation deck of a skyscraper manages to drop a penny over the edge. As the penny falls faster, the force du
    11·2 answers
  • What is the atomic number z of 73li?
    12·2 answers
  • A titanium bicycle frame displaces 0.314 l of water and has a mass of 1.41 kg.part what is the density of the titanium in g/cm3
    7·1 answer
  • The electric field at a point 2.8 cm from a small object points toward the object with a strength of 180,000 N/C. What is the ob
    8·1 answer
  • Two children stand on a platform at the top of a curving slide next to a backyard swimming pool. At the same moment the smaller
    12·1 answer
  • A ball is launched with initial speed v from ground level up a frictionless slope (This means the ball slides up the slope witho
    11·1 answer
  • Suppose a ray of light traveling in a material with an index of refraction n a reaches an interface with a material having an in
    12·1 answer
  • A student slides her 80.0-kg desk across the level floor of her dormitory room a distance 4.00 m at constant speed. If the coeff
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!