...the potential energy that you build while going up the hill on the roller coaster could be let go as kinetic energy -- the energy of motion that takes you down the hill of the roller coaster.
Answer:
C
Explanation:
Formula E=F/C also E=V/d
In this case use the second formula; E=V/d
Data given; E=4N/C d=8m
So v=E X d
V=4x8=32V
k.e=eV= 2X32=64eV
Answer:
Incomplete question
This is the complete question
For a magnetic field strength of 2 T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical nerve that has a diameter of 1.5 mm. Assume that the entire nerve carries a current due to an applied voltage of 100 mV (that of a typical action potential). The resistivity of the nerve is 0.6ohms meter
Explanation:
Given the magnetic field
B=2T
Lenght of rod is 1mm
L=1/1000=0.001m
Diameter of rod=1.5mm
d=1.5/1000=0.0015m
Radius is given as
r=d/2=0.0015/2
r=0.00075m
Area of the circle is πr²
A=π×0.00075²
A=1.77×10^-6m²
Given that the voltage applied is 100mV
V=0.1V
Given that resistive is 0.6 Ωm
We can calculate the resistance of the cylinder by using
R= ρl/A
R=0.6×0.001/1.77×10^-6
R=339.4Ω
Then the current can be calculated, using ohms law
V=iR
i=V/R
i=0.1/339.4
i=2.95×10^-4 A
i=29.5 mA
The force in a magnetic field of a wire is given as
B=μoI/2πR
Where
μo is a constant and its value is
μo=4π×10^-7 Tm/A
Then,
B=4π×10^-7×2.95×10^-4/(2π×0.00075)
B=8.43×10^-8 T
Then, the force is given as
F=iLB
Since B=2T
F=iL(2B)
F=2.95×10^-4×2×8.34×10^-8
F=4.97×10^-11N
Solution :
Mass of the particle = M
Speed of travel = v
Energy of one photon after the decay which moves in the positive x direction = 233 MeV
Energy of second photon after the decay which moves in the negative x direction = 21 MeV
Therefore, the total energy after the decay is = 233 + 21
= 254 MeV
So by the law of conservation of energy, we have :
Total energy before the decay = total energy after decay
So, the total relativistic energy of the particle before its decay = 254 MeV
Answer:
D. the amount of chemical energy equals the amount of heat and light energy.
Explanation:
Given that the first law of thermodynamics affirmed that energy is neither created nor destroyed however, it can be transformed from one form to another. In other words, while, during the transformation of energy, no energy is lost, the input energy is also equal to output energy.
Hence, the chemical energy stored in the log is EQUAL to the heat and light energy produced by burning.