answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zubka84 [21]
2 years ago
12

1. Two firefighters are fighting a fire with identical water hoses and nozzles, except that one is holding the hose straight so

that the water leaves the nozzle in the same direction it comes, while the other holds it backward so that the water makes a U-turn before being discharged. Which firefighter will experience a greater reaction force
Physics
1 answer:
ololo11 [35]2 years ago
4 0

Answer:

The firefighter who holds the hose in the backward direction will experience greater force.

Explanation:

Lets take

mass flow rate = m

Inlet velocity = v₁

Exit velocity = v₂

When water leaves in the same direction ,then change in the linear momentum = m (v₂  - v₁)      

And we know that change in the linear momentum is known as force.        

F₁ =m (v₂  - v₁)                                     ----------1

When water leaves in the opposite direction(U turn) ,then change in the linear momentum = m (v₂  +v₁)              

F₂= m (v₂  +v₁)                                       --------2

F₂ >F₁

There fore when water leaves in the U turn pipe will feel more force.

The firefighter who holds the hose in the backward direction will experience greater force.

You might be interested in
Does the rankine degree represent a larger or smaller temperature unit than the kelvin degree
zvonat [6]
The best and most correct answer among the choices provided by the question is the first choice, larger.

Rankine is Fahrenheit + 460 , while Kelvin is Celsius + 273. We all know that Fahrenheit has larger number compared to kelvin , thus rankine is much larger.
Hope my answer would be a great help for you.    If you have more questions feel free to ask here at Brainly.
8 0
2 years ago
A fish is swimming around the 720-meter perimeter of her pond. If she swims 10 laps in 120 minutes, what is her average speed in
zavuch27 [327]

Answer:

60

Explanation:

5 0
2 years ago
Read 2 more answers
A small rock is launched straight upward from the surface of a planet with no atmosphere. The initial speed of the rock is twice
Scorpion4ik [409]

If gravitational effects from other objects are negligible, the speed of the rock at a very great distance from the planet will approach a value of \sqrt{3} v_{e}

<u>Explanation:</u>

To express velocity which is too far from the planet and escape velocity by using the energy conservation, we get

Rock’s initial velocity , v_{i}=2 v_{e}. Here the radius is R, so find the escape velocity as follows,

            \frac{1}{2} m v_{e}^{2}-\frac{G M m}{R}=0

            \frac{1}{2} m v_{e}^{2}=\frac{G M m}{R}

            v_{e}^{2}=\frac{2 G M}{R}

            v_{e}=\sqrt{\frac{2 G M}{R}}

Where, M = Planet’s mass and G = constant.

From given conditions,

Surface potential energy can be expressed as,  U_{i}=-\frac{G M m}{R}

R tend to infinity when far away from the planet, so v_{f}=0

Then, kinetic energy at initial would be,

                  k_{i}=\frac{1}{2} m v_{i}^{2}=\frac{1}{2} m\left(2 v_{e}\right)^{2}

Similarly, kinetic energy at final would be,

                k_{f}=\frac{1}{2} m v_{f}^{2}

Here, v_{f}=\text { final velocity }

Now, adding potential and kinetic energies of initial and final and equating as below, find the final velocity as

                 U_{i}+k_{i}=k_{f}+v_{f}

                 \frac{1}{2} m\left(2 v_{e}\right)^{2}-\frac{G M m}{R}=\frac{1}{2} m v_{f}^{2}+0

                  \frac{1}{2} m\left(2 v_{e}\right)^{2}-\frac{G M m}{R}=\frac{1}{2} m v_{f}^{2}

'm' and \frac{1}{2} as common on both sides, so gets cancelled, we get as

                   4\left(v_{e}\right)^{2}-\frac{2 G M}{R}=v_{f}^{2}

We know, v_{e}=\sqrt{\frac{2 G M}{R}}, it can be wriiten as \left(v_{e}\right)^{2}=\frac{2 G M}{R}, we get

                4\left(v_{e}\right)^{2}-\left(v_{e}\right)^{2}=v_{f}^{2}

                v_{f}^{2}=3\left(v_{e}\right)^{2}

Taking squares out, we get,

                v_{f}=\sqrt{3} v_{e}

4 0
2 years ago
A 3.45-kg centrifuge takes 100 s to spin up from rest to its final angular speed with constant angular acceleration. A point loc
Dafna11 [192]

Answer:

(a) 18.75 rad/s²

(b) 14920.78 rev

Explanation:

(a)

First we find the acceleration of the centrifuge using,

a = (v-u)/t......................... Equation 1

Where v = final velocity, u = initial velocity, t = time.

Given: v = 150 m/s,  u = 0 m/s ( from rest), t = 100 s

Substitute into equation 1

a = (150-0)/100

a = 1.5 m/s²

Secondly we calculate for the angular acceleration using

α = a/r..................... Equation 2

Where α = angular acceleration, r = radius of the centrifuge

Given: a = 1.5 m/s², r = 8 cm = 0.08 m

substitute into equation 2

α = 1.5/0.08

α = 18.75 rad/s²

(b)

Using,

Ф = (ω'+ω).t/2........................... Equation 3

Where Ф = number of revolution of the centrifuge, ω' = initial angular velocity, ω = Final angular velocity.

But,

ω = v/r and ω' = u/r

therefore,

Ф = (u/r+v/r).t/2

where u = 0 m/s (at rest),  = 150 m/s, r = 0.08 m, t = 100 s

Ф = [(0/0.08)+(150/0.08)].100/2

Ф = 93750 rad

If,

1 rad = 0.159155 rev,

Ф = (93750×0.159155) rev

Ф = 14920.78 rev

6 0
2 years ago
You slip a wrench over a bolt. Taking the origin at the bolt, the other end of the wrench is at x=18cm, y=5.5cm. You apply a for
mart [117]

Answer:

The torque on the wrench is 4.188 Nm

Explanation:

Let r = xi + yj where is the distance of the applied force to the origin.

Since x = 18 cm = 0.18 cm and y = 5.5 cm = 0.055 cm,

r = 0.18i + 0.055j

The applied force f = 88i - 23j

The torque τ = r × F

So, τ = r × F = (0.18i + 0.055j) × (88i - 23j) = 0.18i × 88i + 0.18i × -23j + 0.055j × 88i + 0.055j × -23j

= (0.18 × 88)i × i + (0.18 × -23)i × j + (0.055 × 88)j × i + (0.055 × -22)j × j  

= (0.18 × 88) × 0 + (0.18 × -23) × k + (0.055 × 88) × (-k) + (0.055 × -22) × 0   since i × i = 0, j × j = 0, i × j = k and j × i = -k

= 0 - 4.14k + 0.0484(-k) + 0

= -4.14k - 0.0484k

= -4.1884k Nm

≅ -4.188k Nm

So, the torque on the wrench is 4.188 Nm

8 0
2 years ago
Other questions:
  • A horse does 860 j of work in 420 seconds while pulling a wagon. what is the power output of the horse? round your answer to the
    12·2 answers
  • Starting from equilibrium at point 0, what point on the pv diagram will describe the ideal gas after the following process? lock
    5·2 answers
  • The balls in the image above have different masses and speeds. Rank them in terms of momentum, from least to greatest.
    13·3 answers
  • An 8.0-kg history textbook is placed on a 1.25-m high desk. How large is the gravitational potential energy of the textbook-Eart
    11·2 answers
  • An object is located 13.5 cm in front of a convex mirror, the image being 7.05 cm behind the mirror. A second object, twice as t
    11·1 answer
  • A propeller blade at rest starts to rotate from t = 0 s to t = 5.0 s with a tangential acceleration of the tip of the blade at 3
    6·1 answer
  • Listed in the Item Bank are key terms and expressions, each of which is associated with one of the columns. Some terms may displ
    15·2 answers
  • Ben walks 500 meters from his house to the corner store. He then walks back toward his house, but continues 200 meters past his
    15·1 answer
  • evaluate the numerical value of the vertical velocity of the car at time t=0.25 s using the expression from part d, where y0=0.7
    10·1 answer
  • Which of these is the largest? <br> a. star<br> b. nebula<br> c. galaxy<br> d. sun
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!