To solve the problem, we enumerate all the given first. Then the required and lastly the solution.
Given:
V1= 1.56x10^3 L = 1560 L P2 = 44.1 kPa
P1 = 98.9 kPa
Required: V2
Solution:
Assuming the gas is ideal. Ideal gas follows Boyle's Law which states that at a given temperature the product of pressure and volume of a gas is constant. In equation,
PV = k
Applying to the problem, we have
P1*V1 = P2*V2
(98.9 kPa)*(1560 L) = (44.1 kPa)*V2
V2 = 3498.5 L
<em>ANSWER: V2 = 3498.5 L</em>
Answer: B
Explanation:
Limiting the maximum current through the bulb. This will help in preserving or improving the bulb's lifetime and also this won't have an effect on the brightness of the bulb as brightness is affected by the average value. Although brightness is a factor of current, reducing the maximum current won't have any bearing on the average current the bulb is getting.
Answer:
option D.
Explanation:
The correct answer is option D.
When an object is in equilibrium torque calculated at any point will be equal to zero.
An object is said to be in equilibrium net moment acting on the body should be equal to zero.
If the net moment on the object is not equal to zero then the object will rotate it will not be stable.
Explanation:
the question is unanswerable
Answer:
35mA
Explanation:
Hello!
To solve this problem we must use the following steps
1. Find the electrical resistance of the metal rod using the following equation

WHERE
α=
metal rod resistivity=2x10^-4 Ωm
l=leght=2m
A= Cross-sectional area

solving

2. Now we model the system as a circuit with parallel resistors, where we will call 1 the metal rod and 2 the man(see attached image)
3.we know that the sum of the currents in 1 and 2 must be equal to 5A, by the law of conservation of energy
I1+I2=5
4.as the voltage on both nodes is the same we can use ohm's law in resitance 1 and 2 (V=IR)
V1=V2
(0.14I1)=2000(i2)
solving for i1
I1=14285.7i2
5.Now we use the equation found in step 3
14285.7i2+i2=5
