Answer:
30 (kg)
Explanation:
therefore the mass of the ball is 2 so 30 (kg)
Answer:
B. South Pole.
Explanation:
In order to answer this question, we simply have to refer to the laws of the equations of gravitational mechanics.
The equation given by Newton tells us that

In the case where we compare a specific place where the Force of Gravity is greater or lesser, we focus on the term assigned to the Planet's Radius.
In the case of
, we understand that they are constant.
We can easily notice that the more the Radius (Height seen from a viewer on the ground), the lower the force will be.
<em>In other words, the smaller the radius in which the measurement is made with respect to the center of the earth, the greater the gravitational force.</em>
In that order of ideas the smallest radio has South Pole, which is about 6356 km from the center of the Earth on the Equator line
I made the drawing in the attached file.
I included two figures.
The upper figure shows the effect of:
- multiplying vector A times 1.5.
It is drawn in red with dotted line.
- multiplying vector B times - 3 .
It is drawn in purple with dotted line.
In the lower figure you have the resultant vector: C = 1.5A - 3B.
The method is that you translate the tail of the vector -3B unitl the point of the vector 1,5A, preserving the angles.
Then you draw the arrow that joins the tail of 1,5A with the point of -3B after translation.
The resultant arrow is the vector C and it is drawn in black dotted line.
Answer:

Explanation:
Torque is defined as the cross product between the position vector ( the lever arm vector connecting the origin to the point of force application) and the force vector.

Due to the definition of cross product, the magnitude of the torque is given by:

Where
is the angle between the force and lever arm vectors. So, the length of the lever arm (r) is minimun when
is equal to one, solving for r:

Newton's first law says that an object at rest tends to stay at rest while an object in motion stays in motion at a constant velocity unless acted upon by an outside force so the amount of force behind the defensive football player (N) was greater than the quarterback's so he was able to over power him which is also called unbalanced forces